

# PIKO CI Falownik fotowoltaiczny 30/50/60 kW



Smart connections.

Instrukcja obsługi

#### Nota prawna

KOSTAL Solar Electric GmbH Hanferstraße 6 79108 Freiburg i. Br. Niemcy Tel. +49 (0)761 477 44 - 100 Faks +49 (0)761 477 44 - 111 www.kostal-solar-electric.com

#### Wyłączenie odpowiedzialności

Podane nazwy użytkowe, nazwy handlowe lub nazwy produktów oraz wszelkie inne nazwy mogą być objęte ochroną prawną, nawet jeśli nie są specjalnie oznaczone (np. jako znaki towarowe). Firma KOSTAL Solar Electric GmbH nie ponosi odpowiedzialności za ich swobodne wykorzystanie. Ilustracje i teksty zestawiono z najwyższą starannością. Mimo to nie można wykluczyć błędów. Nie gwarantujemy poprawności zestawienia.

#### Ogólne równouprawnienie

Firma KOSTAL Solar Electric GmbH jest świadoma znaczenia języka w odniesieniu do równouprawnienia kobiet i mężczyzn i stara się zawsze przestrzegać zasad równouprawnienia. Jednak dla zapewnienia lepszej czytelności zrezygnowano ze stosowania w instrukcji osobnych form żeńskich i męskich.

#### © 2021 KOSTAL Solar Electric GmbH

Firma KOSTAL Solar Electric GmbH zastrzega sobie wszystkie prawa, również prawo do powielania fotomechanicznego i zapisywania w mediach elektronicznych. Wykorzystanie do celów komercyjnych lub udostępnienie tekstów, modeli, rysunków i zdjęć zastosowanych w tym produkcie jest zabronione. Bez uprzedniej pisemnej zgody instrukcji nie wolno niniejszej instrukcji powielać, zapisywać ani przesyłać w całości bądź częściowo, ani też odtwarzać lub tłumaczyć w jakiejkolwiek formie i z użyciem jakiegokolwiek medium.

Obowiązuje od wersji:

Oprogramowanie sprzętowe (FW): V3.3 Kod wewnętrzny (płyta sterownika): 010808 Wersja płyty komunikacyjnej: 010806 KOSTAL PIKO CI (aplikacja): V6.8.4 Dziękujemy za zakup falownika firmy KOSTAL Solar Electric GmbH.

Instalator powinien przekazać Państwu całą dokumentację dotyczącą instalacji fotowoltaicznej i poinformować o następujących kwestiach:

- Położenie i funkcja wszystkich urządzeń przełączających
- Bezpieczne postępowanie z urządzeniem
- Fachowy przebieg przeglądów i konserwacji
- Znaczenie diod LED
- Osoby do kontaktu w razie awarii
- Opcjonalnie dokumentacja systemu i kontroli zgodnie z DIN EN 62446 (VDE 0126-23)

W przypadku pytań technicznych można kontaktować się z naszą infolinią serwisową:

- Niemcy i inne kraje <sup>1</sup>
  +49 (0)761 477 44 222
- Szwajcaria
  +41 32 5800 225
- Francja, Belgia, Luksemburg
  +33 16138 4117
- Grecja
  +30 2310 477 555
- Włochy
  +39 011 97 82 420
- Hiszpania, Portugalia<sup>2</sup>
  +34 961 824 927
- Polska
  +48 22 153 14 98

<sup>1</sup> język: niemiecki, angielski

<sup>2</sup> język: hiszpański, angielski

# Spis treści

| 1.   | Informacje ogólne                                 | 6   |
|------|---------------------------------------------------|-----|
| 1.1  | Zastosowanie zgodnie z przeznaczeniem             | . 7 |
| 1.2  | Deklaracje zgodności UE                           | . 9 |
| 1.3  | Informacje na temat instrukcji                    | 10  |
| 1.4  | Uwagi w instrukcji                                | 12  |
| 1.5  | Zastosowane symbole                               | 16  |
| 1.6  | Oznaczenia na urządzeniu                          | 17  |
| 2.   | Opis urządzenia i systemu                         | 18  |
| 2.1  | Schemat systemu                                   | 19  |
| 2.2  | Widok urządzenia                                  | 20  |
| 2.3  | Przegląd funkcji                                  | 23  |
| 3.   | Instalacja                                        | 29  |
| 3.1  | Transport i przechowywanie                        | 30  |
| 3.2  | Zakres dostawy                                    | 31  |
| 3.3  | Montaż                                            | 32  |
| 3.4  | Podłączenie elektryczne                           | 38  |
| 3.5  | Widok portów komunikacyjnych                      | 43  |
| 3.6  | Montaż anteny WiFi                                | 44  |
| 3.7  | Sposoby komunikacji                               | 45  |
| 3.8  | Komunikacja przez LAN                             | 47  |
| 3.9  | Komunikacja przez RS485                           | 49  |
| 3.10 | Komunikacja przez WiFi                            | 51  |
| 3.11 | Podłączenie licznika KOSTAL Smart Energy Meter    | 52  |
| 3.12 | Podłączenie centralnej ochrony sieci i instalacji | 61  |
| 3.13 | Podłączenie odbiornika do zdalnego sterowania     | 64  |
| 3.14 | Zamknięcie falownika                              | 67  |
| 3.15 | Podłączanie paneli PV                             | 68  |
| 3.16 | Pierwsze uruchomienie                             | 77  |
| 4.   | Eksploatacja i obsługa                            | 79  |
| 4.1  | Włącz falownik                                    | 80  |
| 4.2  | Wyłączanie falownika                              | 81  |
| 4.3  | Odłączenie falownika od źródła napięcia           | 82  |
| 4.4  | Stany operacyjne falownika                        | 84  |
| 4.5  | Diody LED statusu                                 | 85  |
| 4.6  | Wyświetlanie statusu w aplikacji                  | 87  |

| 5.   | Aplikacja KOSTAL PIKO CI                        | 88   |
|------|-------------------------------------------------|------|
| 5.1  | Aplikacja KOSTAL PIKO CI                        | . 89 |
| 5.2  | Instalacja aplikacji KOSTAL PIKO CI             | . 90 |
| 5.3  | Połączenie falownika z aplikacją KOSTAL PIKO CI | . 91 |
| 5.4  | Logowanie jako administrator                    | . 92 |
| 5.5  | Aplikacja KOSTAL PIKO CI – Struktura menu       | . 93 |
| 5.6  | Aplikacja KOSTAL PIKO CI – Opis menu            | . 97 |
| 6.   | Monitorowanie instalacji                        | 105  |
| 6.1  | Dane dziennika                                  | 106  |
| 6.2  | Odczyt danych dziennika                         | 107  |
| 6.3  | KOSTAL Solar Portal                             | 109  |
| 7.   | Konserwacja                                     | 110  |
| 7.1  | Podczas pracy                                   | 111  |
| 7.2  | Konserwacja i czyszczenie                       | 112  |
| 7.3  | Czyszczenie obudowy                             | 113  |
| 7.4  | Wentylatory                                     | 114  |
| 7.5  | Wymiana bezpiecznika PV                         | 115  |
| 7.6  | Aktualizacja oprogramowania                     | 116  |
| 7.7  | Kody zdarzeń                                    | 118  |
| 8.   | Dane techniczne                                 | 124  |
| 8.1  | Dane techniczne                                 | 125  |
| 8.2  | Schematy blokowe                                | 129  |
| 9.   | Akcesoria                                       | 132  |
| 9.1  | KOSTAL Solar Portal                             | 133  |
| 9.2  | Aplikacja KOSTAL Solar                          | 134  |
| 10.  | Załącznik                                       | 135  |
| 10.1 | Tabliczka znamionowa                            | 136  |
| 10.2 | Gwarancja i serwis                              | 137  |
| 10.3 | Przekazanie użytkownikowi                       | 138  |
| 10.4 | Wyłączenie z eksploatacji i utylizacja          | 139  |

# 1. Informacje ogólne

| 1.1 | Zastosowanie zgodnie z przeznaczeniem | . 7 |
|-----|---------------------------------------|-----|
| 1.2 | Deklaracje zgodności UE               | . 9 |
| 1.3 | Informacje na temat instrukcji        | 10  |
| 1.4 | Uwagi w instrukcji                    | 12  |
| 1.5 | Zastosowane symbole                   | 16  |
| 1.6 | Oznaczenia na urządzeniu              | 17  |

# 1.1 Zastosowanie zgodnie z przeznaczeniem

Falownik przetwarza prąd stały z systemów fotowoltaicznych (PV) na prąd przemienny. Można go wykorzystywać do następujących celów:

- zużycie własne
- do dostarczania do sieci elektroenergetycznej

Urządzenie wolno stosować wyłącznie w instalacjach połączonych z siecią w przewidzianym zakresie mocy i w dopuszczalnych warunkach otoczenia. Urządzenie nie jest przeznaczone do użytku przenośnego.

Niewłaściwe zastosowanie może spowodować zagrożenia dla zdrowia i życia użytkownika oraz osób trzecich. Ponadto może dojść do uszkodzenia urządzenia i innych szkód materialnych. Falownik wolno stosować wyłącznie do określonego celu.

Wszystkie elementy zamontowane w falowniku lub instalacji muszą spełniać normy i przepisy obowiązujące w danym kraju.

### Wyłączenie odpowiedzialności 🛽

Inne wykorzystanie jest uznawane za niezgodne z przeznaczeniem. Producent nie ponosi odpowiedzialności za wynikłe z tego szkody.

Zabrania się wprowadzania modyfikacji w falowniku. Falownik wolno stosować wyłącznie w nienagannym i bezpiecznym stanie technicznym. Każde niewłaściwe wykorzystanie powoduje utratę gwarancji, rękojmi i odpowiedzialności ogólnej producenta.

Urządzenie może otwierać tylko wykwalifikowany elektryk. Falownik musi zostać zainstalowany przez przeszkolonego elektryka (zgodnie z normą DIN VDE 1000-10, przepisami bezpieczeństwa BGV A3 lub porównywalną normą międzynarodową), który jest odpowiedzialny za przestrzeganie obowiązujących norm i przepisów.

Prace, które mogą mieć wpływ na sieć elektroenergetyczną eksploatowaną przez zakład energetyczny (ZE), mogą wykonywać wyłącznie elektrycy uprawnieni przez zakład energetyczny. Do prac tych należy również zmiana ustawionych fabrycznie parametrów. Instalator musi przestrzegać przepisów zakładu energetycznego.

Ustawienia fabryczne mogą zmieniać wyłącznie wykwalifikowani elektroinstalatorzy lub osoby o porównywalnych lub wyższych kwalifikacjach, np. mistrzowie, technicy lub inżynierowie. Należy przy tym przestrzegać wszystkich podanych parametrów i wymagań.



WAŻNA INFORMACJA

Prace związane z montażem, konserwacją i naprawami falownika może wykonywać wyłącznie wykwalifikowany elektryk.

Elektryk jest odpowiedzialny za przestrzeganie obowiązujących norm i przepisów. Prace, które mogą mieć wpływ na sieć elektroenergetyczną eksploatowaną przez zakład energetyczny (ZE) w miejscu dostarczania energii solarnej do sieci, mogą wykonywać wyłącznie elektrycy uprawnieni przez zakład energetyczny.

Do prac tych należy również zmiana ustawionych fabrycznie parametrów.

# 1.2 Deklaracje zgodności UE

Firma **KOSTAL Solar Electric GmbH** oświadcza niniejszym, że falowniki opisane w niniejszym dokumencie spełniają zasadnicze wymagania i inne istotne postanowienia podanych poniżej dyrektyw.

- Dyrektywa 2014/30/UE (kompatybilność elektromagnetyczna, EMC)
- Dyrektywa 2014/35/UE (udostępnianie na rynku sprzętu elektrycznego przewidzianego do stosowania w określonych granicach napięcia – w skrócie: dyrektywa niskonapięciowa)
- Dyrektywa 2015/53/UE (udostępnianie na rynku urządzeń radiowych – w skrócie: dyrektywa radiowa, RED)
- Dyrektywa 2011/65/UE (ograniczenie stosowania niektórych niebezpiecznych substancji w sprzęcie elektrycznym i elektronicznym, RoHS)

Pełną deklarację zgodności UE można znaleźć w sekcji materiałów do pobrania na stronie:

#### www.kostal-solar-electric.com

# 1.3 Informacje na temat instrukcji

Należy dokładnie przeczytać niniejszą instrukcję.

Zawiera ona ważne informacje na temat instalacji i eksploatacji falownika. Należy przestrzegać zwłaszcza zasad bezpiecznego użytkowania. Firma KOSTAL Solar Electric GmbH nie odpowiada za szkody powstałe na skutek nieprzestrzegania niniejszej instrukcji.

Instrukcja stanowi integralną część produktu. Obowiązuje wyłącznie w odniesieniu do falowników firmy KOSTAL Solar Electric GmbH. Należy ją zachować i w razie sprzedaży urządzenia przekazać nowemu użytkownikowi.

Instalator i użytkownik muszą mieć stały dostęp do instrukcji. Instalator musi znać instrukcję i stosować się do jej treści.

Aktualną wersję instrukcji obsługi produktu można pobrać ze strony

#### www.kostal-solar-electric.com.

#### Grupa docelowa

Niniejsza instrukcja jest skierowana do wykwalifikowanego elektryka, który instaluje, serwisuje i naprawia falownik.

Falowniki opisane w niniejszej instrukcji różnią się od siebie pod względem określonych parametrów technicznych. Informacje i polecenia dotyczące tylko określonych typów urządzeń są odpowiednio oznaczone.

Informacje dotyczące bezpieczeństwa użytkownika lub urządzenia są szczególnie wyróżnione.

### Nawigacja po dokumencie

Nawigację po dokumencie ułatwiają obszary, które można kliknąć.

W nagłówku każdej strony znajduje się pasek nawigacji. Klikając tutaj odpowiednią zakładkę, przechodzi się do spisu treści danego rozdziału.

W taki sam sposób obsługuje się spisy treści: Ze spisu treści umieszczonego na początku danego rozdziału można przejść do odpowiedniego punktu.



llustr. 1: Nawigacja po dokumencie



- 2 Pasek nawigacji
- Spisy treści

W obrębie tekstu znajdują się odnośniki, które umożliwiają przejście do odpowiednich miejsc w dokumencie.

🖬 Rozdz. 1



llustr. 2: Przykładowe odnośniki

# 1.4 Uwagi w instrukcji

W tekście są wstawione uwagi. W niniejszej instrukcji rozróżnia się uwagi ostrzegawcze i informacyjne. Wszystkie uwagi są oznaczone symbolem w danym wierszu.



- 2 Uwaga ostrzegawcza
- **3** Uwaga informacyjna
- Inne uwagi

### Uwagi ostrzegawcze

Uwagi ostrzegawcze informują o zagrożeniach dla zdrowia i życia. Mogą wystąpić ciężkie obrażenia, nawet ze skutkiem śmiertelnym.

Każda uwaga ostrzegawcza składa się z następujących elementów:



llustr. 4: Struktura uwag ostrzegawczych

- **1** Symbol ostrzegawczy
- 2 Hasło ostrzegawcze
- Rodzaj zagrożenia
- 4 Środek zaradczy

#### Symbole ostrzegawcze



Niebezpieczeństwo



Niebezpieczeństwo porażenia prądem elektrycznym i wyładowania elektrostatycznego



Niebezpieczeństwo poparzeń

#### Hasła ostrzegawcze

Hasła ostrzegawcze określają powagę zagrożenia.

#### NIEBEZPIECZEŃSTWO

Określa bezpośrednie zagrożenie o wysokim stopniu ryzyka. Jeśli się go nie uniknie, spowoduje śmierć lub ciężkie obrażenia ciała.

#### OSTRZEŻENIE

Określa zagrożenie o średnim stopniu ryzyka. Jeśli się go nie uniknie, spowoduje śmierć lub ciężkie obrażenia ciała.

#### OSTROŻNIE

Określa zagrożenie o niskim stopniu ryzyka. Jeśli się go nie uniknie, spowoduje nieznaczne lub średnie obrażenia lub szkody materialne.

#### Uwagi informacyjne

Uwagi informacyjne zawierają ważne instrukcje dotyczące instalacji i prawidłowej eksploatacji falownika. Należy ich bezwzględnie przestrzegać. Niezastosowanie się do uwag informacyjnych może spowodować szkody materialne lub finansowe.



WAŻNA INFORMACJA

Prace związane z montażem, obsługą, konserwacją i naprawami urządzenia może wykonywać wyłącznie wykwalifikowany specjalistyczny personel posiadający stosowne wykształcenie.

llustr. 5: Przykładowa uwaga informacyjna

### Symbole w obrębie uwag informacyjnych



Ważna informacja



Możliwe szkody rzeczowe

## Inne uwagi

Zawierają one dodatkowe informacje lub porady.



INFORMACJA

Jest to informacja dodatkowa.

llustr. 6: Przykładowa uwaga informacyjna

#### Symbole w obrębie innych uwag



Informacja lub porada



Widok powiększony

# 1.5 Zastosowane symbole

| Symbol    | Znaczenie                                                       |
|-----------|-----------------------------------------------------------------|
| 1., 2., 3 | Kolejne kroki jednego polecenia                                 |
| <b>→</b>  | Skutek polecenia                                                |
| ✓         | Wynik końcowy polecenia                                         |
|           | Odnośnik do innych miejsc w dokumencie lub do innych dokumentów |
| •         | Lista                                                           |

Tab. 1: Zastosowane symbole

# Zastosowane skróty

| Skrót   | Objaśnienie |
|---------|-------------|
| Tab.    | Tabela      |
| llustr. | llustracja  |
| Poz.    | Pozycja     |
| Rozdz.  | Rozdział    |

# 1.6 Oznaczenia na urządzeniu



Na obudowie falownika znajdują się tabliczka znamionowa i inne oznaczenia. Tabliczek i oznaczeń nie wolno modyfikować ani usuwać.

| Symbol   | Objaśnienie                                                                                                                                                       |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4        | Niebezpieczeństwo porażenia prądem elektrycznym<br>i wyładowania elektrostatycznego                                                                               |
| <u></u>  | Niebezpieczeństwo poparzeń                                                                                                                                        |
|          | Ostrzeżenie                                                                                                                                                       |
| 5 min    | Niebezpieczeństwo porażenia prądem elektrycz-<br>nym i wyładowania elektrostatycznego. Po wyłą-<br>czeniu odczekać pięć minut (czas wyładowania<br>kondensatorów) |
| <u> </u> | Dodatkowe uziemienie                                                                                                                                              |
| Ĩ        | Przeczytać instrukcję obsługi i jej przestrzegać                                                                                                                  |
|          | Urządzenia nie wolno wyrzucać do zwykłego pojem-<br>nika na śmieci.<br>Przestrzegać obowiązujących lokalnych przepisów<br>dotyczących utylizacji odpadów          |
| €        | Oznaczenie CE<br>Produkt spełnia obowiązujące wymagania UE                                                                                                        |

# 2. Opis urządzenia i systemu

| 2.1 | Schemat systemu  | 19 |
|-----|------------------|----|
|     |                  |    |
| 0 0 | Widekurzedzenie  | 20 |
| 2.2 | WIOK UIZądzenia  | 20 |
|     |                  |    |
| 2.3 | Przeglad funkcji | 23 |

# 2.1 Schemat systemu



llustr. 7: Schemat systemu

- 1 Stringi fotowoltaiczne
- 2 Falownik PIKO CI 30 / 50 lub 60
- Wyłącznik nadmiarowo-prądowy AC
- 4 Licznik energii
- 5 Rozdzielnia
- 6 Sieć elektroenergetyczna
- 7 Połączenie komunikacyjne (opcja)
- 8 Router, połączenie z komputerem
- Internet

# 2.2 Widok urządzenia

# Falownik PIKO CI 30



Ilustr. 8: Falownik PIKO CI 30 (widok z zewnątrz)

- 1 Dioda statusu
- 2 Wyłącznik DC
- Antena WiFi
- Panel złączy COM1 (moduł komunikacyjny)
- 5 Panel złączy COM2 (RS485, LAN, wejścia cyfrowe)
- Złącze do przewodu zasilającego
- 7 Złącza do paneli fotowoltaicznych
- B Dodatkowy zacisk PE (zewnętrzny)
- 9 Wentylator
- 10 Osłona panelu złączy COM2
- 11 Osłona złącza przewodu zasilającego

## Falownik PIKO CI 50/60



Ilustr. 9: Falownik PIKO CI 50/60 (widok z zewnątrz)

- 1 Dioda statusu
- 2 Pokrywa przestrzeni przyłączeniowej
- Antena WiFi
- Panel złączy COM1 (moduł komunikacyjny)
- 5 Panel złączy COM2 (RS485, LAN, wejścia cyfrowe)
- Przepust kablowy do przewodu zasilającego
- 7 Wyłącznik DC
- <sup>8</sup> Złącza do paneli fotowoltaicznych
- 9 Wentylator
- 10 Dodatkowy zacisk PE (zewnętrzny)
- 11 Osłona panelu złączy COM2

## Dioda statusu

Diody statusu informują o stanie operacyjnym falownika.

Więcej informacji 🗖 Rozdz. 7.7.



llustr. 10: Dioda statusu

- 1 Status paneli PV
- 2 Status sieci
- 3 Status komunikacji
- Komunikat ostrzegawczy

# 2.3 Przegląd funkcji

Falownik przetwarza energię z podłączonych paneli PV na prąd przemienny i dostarcza go do publicznej sieci energetycznej.

### Prąd przemienny trójfazowy

Falowniki PIKO CI wytwarzają trójfazowy prąd przemienny i dzięki swojej dużej mocy wyjściowej są zoptymalizowane do stosowania w średnich i dużych instalacjach PV. Można je zatem stosować w elektrowniach słonecznych, farmach fotowoltaicznych i podobnych obiektach. Falowniki mogą być eksploatowane w sieciach TT, TN-C, TN-S i TN-C-S.

### Bezprzewodowe uruchomienie

Uruchomienie odbywa się bezprzewodowo przy użyciu tabletu lub smartfona. W tym celu dostępna jest aplikacja *KOSTAL PIKO CI*, którą można pobrać bezpłatnie ze sklepu z aplikacjami.

#### Pomiar wytwarzanej energii

Poprzez podłączenie zewnętrznego licznika energii falownik może monitorować przepływ energii i sterować optymalnie mocą wyjściową zgodnie z zapotrzebowaniem sieci.

## Komunikacja

Falownik posiada różne złącza komunikacyjne, poprzez które nawiązywane jest połączenie z innymi falownikami, czujnikami, licznikami energii lub połączenie z Internetem.

- RS485/Modbus (RTU)
  Do złącza Modbus podłącza się rejestratory danych lub liczniki energii do pomiaru przepływu energii.
- Poprzez LAN lub WiFi falownik jest podłączony do sieci lokalnej, za pośrednictwem której ma dostęp do Internetu i portalu solarnego.

Wszystkie dane są przesyłane w postaci zaszyfrowanej.

### Centralna ochrona sieci i instalacji

Zdalne połączenie umożliwia podłączenie do wyłącznika sieciowego i tym samym realizację centralnej ochrony sieci i instalacji zgodnie z wymaganiami przepisów technicznych operatorów sieci.

### Odbiornik do zdalnego sterowania

W przypadku instalacji, w których operator sieci steruje mocą oddawaną do sieci za pomocą odbiorników do zdalnego sterowania, falownik posiada niezbędne do tego wejścia cyfrowe.

# Funkcje aplikacji

Darmowa aplikacja *KOSTAL PIKO CI* posiada graficzny interfejs użytkownika. Aplikacja ta służy do uruchamiania i konfigurowania falownika oraz do wyświetlania jego statusu:

- Logowanie w falowniku
- Logowanie jako użytkownik lub administrator
- Kontrola statusu
- Aktualne wartości energii oddawanej na przyłączu sieciowym
- Wyświetlanie danych dziennika / zdarzeń
- Wyświetlanie wersji falownika
- Konfiguracja falownika (np. połączenie LAN, konfiguracja licznika energii itp.)

## **KOSTAL Solar Portal**

**KOSTAL Solar Portal** chroni inwestycję w system fotowoltaiczny przed utratą zysków, np. poprzez aktywne alarmowanie e-mailem w przypadku wystąpienia określonych zdarzeń.

Rejestracja w *KOSTAL Solar Portal* jest bezpłatna i możliwa na stronie **www.kostal-solar-portal.com**.

Funkcje:

- Dostęp do portalu przez internet z dowolnego miejsca na ziemi
- Wykresy graficzne mocy i uzysków
- Wizualizacja i uwrażliwienie w celu optymalizacji zużycia własnego
- Powiadamianie o zdarzeniach poprzez e-mail
- Eksport danych
- Przetwarzanie danych z czujników
- Wyświetlanie i potwierdzanie możliwego obniżenia mocy czynnej przez operatora sieci
- Zapisywanie danych dziennika w celu długotrwałego i bezpiecznego monitorowania systemu fotowoltaicznego
- Udostępnianie danych systemu do aplikacji KOSTAL Solar

Dalsze informacje na temat tego produktu można znaleźć na naszej stronie internetowej www.kostal-solar-electric.com w rubryce Produkty > Oprogramowanie monitorujące > KOSTAL Solar Portal.

## Kody zdarzeń

Zdarzenia lub zakłócenia podczas pracy są zapisywane w pamięci zdarzeń falownika i przesyłane do **KOSTAL Solar Portal** lub mogą być odczytywane za pomocą aplikacji **KOSTAL PIKO CI**.

Więcej informacji **Rozdz. 7.7**.

## Koncepcja serwisowa

Kody zdarzeń do celów serwisowych można odczytać za pomocą aplikacji *KOSTAL PIKO CI* App lub w *KOSTAL Solar Portal*. Dzięki temu instalator lub serwisant może jeszcze przed przyjazdem na miejsce zdecydować, jakie działania są niezbędne. W ten sposób można uniknąć wielokrotnych wizyt serwisu.

### Oprogramowanie do doboru falownika KOSTAL Solar Plan

Nasze darmowe oprogramowanie *KOSTAL Solar Plan* ułatwia dobór właściwego falownika.

Wystarczy wprowadzić dane instalacji i indywidualne dane klienta, aby poznać rekomendowany model falownika KOSTAL dostosowany do planowanej instalacji fotowoltaicznej. Oprogramowanie uwzględnia wszystkie falowniki KOSTAL. Ponadto pod uwagę jest brane zużycie energii elektrycznej przez klienta. Za pomocą standardowych profili obciążenia wyświetlane są możliwości zużycia własnego i samowystarczalności.

W oprogramowaniu *KOSTAL Solar Plan* są dostępne następujące sekcje doboru falownika:

- Szybki dobór Ręczny dobór falownika na podstawie specyfikacji falowników
- Dobór Automatyczny dobór falownika z możliwością uwzględnienia zużycia energii elektrycznej
- Dobór akumulatora Automatyczny dobór falownika z możliwością uwzględnienia zużycia energii elektrycznej

Poza wygodnym doborem falownika *KOSTAL Solar Plan* umożliwia również przygotowywanie ofert. Wprowadzone dane techniczne można rozszerzyć o dane klienta, projektu i instalatora, a następnie dołączyć je do oferty w postaci zestawienia w formacie PDF. Projekt można również zapisać w pliku projektu i w razie potrzeby edytować.

Dalsze informacje na temat tego produktu można znaleźć na naszej stronie internetowej **www.kostal-solar-electric.com** w rubryce **Portal instalatora > KOSTAL Solar Plan**.

# 3. Instalacja

| 3.1  | Transport i przechowywanie                        | 30 |
|------|---------------------------------------------------|----|
| 3.2  | Zakres dostawy                                    | 31 |
| 3.3  | Montaż                                            | 32 |
| 3.4  | Podłączenie elektryczne                           | 38 |
| 3.5  | Widok portów komunikacyjnych                      | 43 |
| 3.6  | Montaż anteny WiFi                                | 44 |
| 3.7  | Sposoby komunikacji                               | 45 |
| 3.8  | Komunikacja przez LAN                             | 47 |
| 3.9  | Komunikacja przez RS485                           | 49 |
| 3.10 | Komunikacja przez WiFi                            | 51 |
| 3.11 | Podłączenie licznika KOSTAL Smart Energy Meter    | 52 |
| 3.12 | Podłączenie centralnej ochrony sieci i instalacji | 61 |
| 3.13 | Podłączenie odbiornika do zdalnego sterowania     | 64 |
| 3.14 | Zamknięcie falownika                              | 67 |
| 3.15 | Podłączanie paneli PV                             | 68 |
| 3.16 | Pierwsze uruchomienie                             | 77 |

# 3.1 Transport i przechowywanie

Przed wysłaniem falownik jest sprawdzany pod względem prawidłowego działania i starannie pakowany. Po dostarczeniu przesyłki należy sprawdzić, czy jest kompletna i czy nie posiada uszkodzeń powstałych podczas transportu.

- Jeśli falownik ma być przechowywany przez dłuższy czas przed montażem, wszystkie elementy falownika należy przechowywać w oryginalnym opakowaniu w suchym i niezapylonym miejscu.
- Jeśli opakowanie zostało uszkodzone, należy je wymienić.
- Ustawiać maksymalnie cztery falowniki jeden na drugim.

#### MOŻLIWE USZKODZENIE

Niebezpieczeństwo uszkodzenia podczas odkładania falownika. Po wypakowaniu falownika należy kłaść go w miarę możliwości na stronie tylnej.

Reklamacje i roszczenia odszkodowawcze należy kierować bezpośrednio do firmy transportowej.

- Do transportu falownika należy użyć uchwytów po lewej i prawej stronie na dole.
- Nie przechylać falownika na bok. Unikać pozycji pochyłej.
- Falownik należy odkładać wyłącznie na jego tylnej stronie.
- Nie kłaść falownika na jednym z boków ani na stronie górnej.

#### **OSTROŻNIE!**

Niebezpieczeństwo obrażeń! Falownik jest bardzo ciężki. Nie wolno podnosić ani transportować falownika samodzielnie. Aby uniknąć obrażeń, należy skorzystać z pomocy jednej lub dwóch osób.

# 3.2 Zakres dostawy

llustr. 11: Zakres dostawy

- 1 Falownik
- 2 Uchwyt ścienny
- Osłona przyłącza AC
- Zestaw montażowy: 3× śruba M12 z nakrętką i podkładką
- 5 Śruba zabezpieczająca M6 (1×)
- Zaślepka uszczelniająca do przeprowadzenia przewodów komunikacyjnych z 3 zatyczkami
- Złącze do interfejsu komunikacyjnego
- 12 x końcówki tulejkowe do kabli komunikacyjnych
- Antena WiFi
- 10 Narzędzie do demontażu złączy DC
- Złącza DC (na każde wejście DC: 1× wtyk, gniazdo)
- 2 Skrócona instrukcja obsługi (Short Manual)

# 3.3 Montaż

## Wybór miejsca montażu



Falownik montować w pomieszczeniach zamkniętych.



Falownik montować w miejscu zabezpieczonym na zewnątrz.



Chronić falownik przed bezpośrednimi opadami atmosferycznymi.



Chronić falownik przed większymi zanieczyszczeniami, np. liśćmi.



Chronić falownik przed kurzem, pyłem, zabrudzeniem i oparami amoniaku. Nie montować w pomieszczeniach i obszarach, w których trzymane są zwierzęta.

Nie montować falownika w strefach zagrożonych wybuchem.



Temperatura otoczenia musi wynosić od -25 °C do +60 °C.

#### WAŻNA INFORMACJA

Przestrzegać tych instrukcji przy wyborze miejsca montażu. Niezastosowanie się do podanych instrukcji może spowodować ograniczenie lub utratę gwarancji.



Wilgotność powietrza musi wynosić od 0 % do 100 % (kondensacja).

Falownik wolno montować na wysokości nie przekraczającej 4000 m n.p.m.



Zachować bezpieczną odległość od materiałów palnych i stref zagrożonych wybuchem w otoczeniu.



Falownik zamontować na stabilnej powierzchni montażowej o nośności odpowiedniej do masy falownika. Ściany z płyt kartonowo-gipsowych i powierzchnie deskowane są niedozwolone.

Nie montować falownika na łatwopalnej powierzchni montażowej.



Falownik montować pionowo. Dopuszczalne jest nachylenie do 15°.

Zachować minimalne odległości oraz niezbędną wolną przestrzeń.

#### OSTRZEŻENIE

#### NIEBEZPIECZEŃSTWO POŻARU PRZEZ GORĄCE ELEMENTY NA FALOWNIKU!

Niektóre elementy mogą się nagrzewać podczas pracy do temperatury ponad 80 °C. Wybrać odpowiednie miejsce montażu zgodnie z wymogami określonymi w niniejszej instrukcji. Nie zasłaniać otworów wentylacyjnych.



Podczas pracy falownik powoduje hałas. Falownik montować w taki sposób, aby odgłosy pracy falownika nie były uciążliwe dla otoczenia.



Falownik musi być łatwo dostępny, a dioda LED statusu dobrze widoczna.



Falownik montować w miejscu niedostępnym dla dzieci lub innych nieupoważnionych osób.



Kable układać z ochroną przed promieniowaniem UV lub używać kabli odpornych na promieniowanie UV.

# Wymiary montażowe

Do montażu używać śrub mocujących odpowiednich do podłoża, masy falownika i warunków otoczenia.

Wymagania dot. śrub mocujących: Ø 12 mm, 8,8, A2-70 WAŻNA INFORMACJA

Bezwzględnie pozostawić wymaganą wolną przestrzeń wokół falownika, aby zapewnić chłodzenie.

llustr. 12: Wymiary montażowe z uchwytem

#### Odległości pomiędzy falownikami

#### WAŻNA INFORMACJA

Podane wartości to odległości minimalne. Zwiększyć odległości, jeśli wymagają tego warunki termiczne w otoczeniu, np. w przypadku niekorzystnej wentylacji lub silnego nasłonecznienia.

llustr. 13: Kilka falowników obok siebie
## Montaż falownika

llustr. 14: Montaż falownika PIKO CI

- Zamontować falownik na ścianie lub na stojaku.
  Należy przestrzegać zalecanych odległości i innych wymogów.
- Zamontować uchwyt na podłożu.
- Umieścić falownik na uchwycie
- Upewnić się, że falownik jest prawidłowo osadzony i nie może zsunąć się z uchwytu montażowego.

.

Zamontować śrubę zabezpieczającą.

#### **OSTROŻNIE!**

Niebezpieczeństwo obrażeń! Falownik jest bardzo ciężki. Nie wolno podnosić ani transportować falownika samodzielnie. Aby uniknąć obrażeń, należy skorzystać z pomocy jednej lub dwóch osób.

## 3.4 Podłączenie elektryczne Omówienie

llustr. 15: Widok złączy elektrycznych

### Złącza falownika

- **1** Złącza do paneli fotowoltaicznych
- 2 Porty komunikacyjne
- Przyłącze AC

## Złącza zewnętrzne

- Wyłącznik nadmiarowo-prądowy
- Licznik energii (np. Smart Energy Meter firmy KOSTAL)
- Sieć elektroenergetyczna

#### WAŻNA INFORMACJA

Zwrócić uwagę na to, aby fazy zacisku przyłączeniowego AC oraz w sieci elektrycznej były zgodne.

Produkt może spowodować przepływ prądu stałego w zewnętrznym uziemionym przewodzie ochronnym. W przypadku stosowania wyłączników różnicowo-prądowych (RCD) lub urządzeń do monitorowania prądu różnicowego (RCM) po stronie AC mogą być zainstalowane wyłącznie RCD lub RCM typu B ≥300 mA.

## Specyfikacja przewodów

## Przyłącze sieciowe AC

Przekrój przewodu musi być dostosowany do znamionowego prądu wyjściowego i sposobu montażu.

Uwzględnić niezbędne współczynniki redukcji temperatury otoczenia i skupienia (przy układaniu kilku przewodów bez odstępów).

Przykład: Temperatura otoczenia 40 °C: Współczynnik redukcji 0,87 (wg DIN VDE 0100-520 / HD 60364-5-52).

| Typ przewodu Długo                                                         | ość przewodu |
|----------------------------------------------------------------------------|--------------|
| Przewód miedziany<br>4-żyłowy (3L/PE bez N) lub maks<br>5-żyłowy (3L/N/PE) | . 200 m      |

| PIKO CI | Przekrój żyły           | Średnica przewodu |
|---------|-------------------------|-------------------|
| 30      | 10 - 25 mm <sup>2</sup> | 24 - 32 mm        |
| 50 / 60 | 30 - 50 mm²             | 25 - 40 mm        |

## Dodatkowy zacisk PE

| PIKO CI | Przekrój żyły        |
|---------|----------------------|
| 30      | ≥ 16 mm <sup>2</sup> |
| 50 / 60 | ≥ 35 mm <sup>2</sup> |

## Przyłącza PV DC

| Typ<br>przewodu                        | Przekrój żyły         | Średnica przewodu |
|----------------------------------------|-----------------------|-------------------|
| Kabel foto-<br>woltaiczny<br>np. PV1-F | 4 - 6 mm <sup>2</sup> | 6 - 8 mm          |

#### **INFORMACJA**

Do instalacji na zewnątrz należy stosować kabel odporny na promieniowanie UV. Alternatywnie ułożyć kabel w sposób chroniący go przed promieniowaniem słonecznym.

## Podłączenie przewodu zasilającego

- 1. Odłączyć sieć elektryczną od napięcia.
- 2. Zabezpieczyć przyłącze AC przed ponownym włączeniem.
- Wyłącznik DC na falowniku przełączyć do pozycji "OFF".
- 4. Ułożyć przewód zasilający od rozdzielni elektrycznej do falownika.
- Zamontować w przewodzie zasilającym niezbędne urządzenia zabezpieczające, np. wyłącznik nadprądowy, wyłącznik różnicowo-prądowy.

NIEBEZPIECZEŃSTWO

ZAGROŻENIE ŻYCIA POPRZEZ PORAŻENIE PRĄDEM ELEK-TRYCZNYM I WYŁADOWANIE ELEKTROSTATYCZNE!

Odłączyć wszystkie urządzenia od źródła napięcia i zabezpieczyć przed ponownym włączeniem.

### WAŻNA INFORMACJA

Do wszystkich prac przy falowniku należy stosować wyłącznie izolowane narzędzia, aby zapobiec zwarciom.

### OSTRZEŻENIE

NIEBEZPIECZEŃSTWO POŻA-RU Z POWODU NADMIERNEGO PRĄDU I NAGRZANIA PRZEWODU ZASILAJĄCEGO!

W celu zabezpieczenia przed nadmiernym prądem zainstalować wyłącznik nadmiarowo-prądowy.

Ilustr. 16: Przygotowanie przewodu AC

6. Odizolować przewód zasilający na długości 120 mm.

- Nasunąć na żyły odpowiednią koszulkę termokurczliwą. Końce żył odizolować i zacisnąć na nich końcówki oczkowe.
- PIKO CI 30: Odkręcić śruby pokrywy przyłącza. Przeprowadzić przewód zasilający przez pokrywę przyłącza.

PIKO CI 50/60: Wykręcić śruby dolnej pokrywy i zdjąć pokrywę. Przeprowadzić przewód zasilający przez przepust do przestrzeni przyłączeniowej falownika.

Podłączyć przewód zasilający do zacisku przyłączeniowego AC zgodnie z oznaczeniem.

### WAŻNA INFORMACJA

Zwrócić uwagę na to, aby fazy zacisku przyłączeniowego AC oraz w sieci elektrycznej były zgodne. 9. PIKO CI 30:

Założyć pokrywę przyłącza na przyłączu AC i dobrze ją przykręcić. Moment dokręcenia: 3 Nm.

PIKO CI 50/60: Zamknąć falownik i dokręcić pokrywę. Moment dokręcenia: 3 Nm.

- Uszczelnić przewód zasilający za pomocą pierścienia uszczelniającego i nakrętki mocującej. Dokręć nakrętkę mocującą.
- **11.** W krajach, w których obowiązkowy jest drugi zacisk przewodu PE, należy go podłączyć w pokazanym miejscu obudowy (na zewnątrz).

llustr. 18: Dodatkowy zacisk PE zewnętrzny w zależności od kraju

Podłączony przewód zasilający

# 3.5 Widok portów komunikacyjnych

llustr. 19: Porty komunikacyjne

- 1 Antena WiFi
- Panel złączy COM1
- Panel złączy COM2
- Gniazdo na moduł komunikacyjny
- Listwa przyłączeniowa interfejsu komunikacyjnego z portem RS485, wejściami cyfrowymi do odbiornika do sterowania zdalnego i portem NAS
- 6 Port LAN
- Przycisk resetowania adresu uruchomienia (WLAN)

| Pozycja | Nazwa                      | Pin | Objaśnienie                           |
|---------|----------------------------|-----|---------------------------------------|
| 5       | Interfejs komunikacyjny    | 1   | GND (masa) dla Remote i DI14          |
|         |                            | 2   | Remote: Centralna ochrona instalacji  |
|         |                            | 3   | DI4: Wejście 4                        |
|         |                            | 4   | DI3: Wejście 3                        |
|         |                            | 5   | DI2: Wejście 2                        |
|         |                            | 6   | DI1: Wejście 1                        |
|         |                            | 7   | Port RS485/Modbus B (wejście, dane -) |
|         |                            | 8   | Port RS485/Modbus A (wejście, dane +) |
|         |                            | 9   | Port RS485/Modbus B (wyjście, dane -) |
|         |                            | 10  | Port RS485/Modbus A (wyjście, dane +) |
| 6       | Zacisk przyłączeniowy RJ45 | -   | Port LAN 1                            |
|         |                            | _   | Port LAN 2                            |

# 3.6 Montaż anteny WiFi

llustr. 20: Montaż anteny WiFi

- 1. Zdjąć osłonkę z gwintu przyłączeniowego w falowniku.
- 2. Przykręcić dołączoną do zestawu antenę WiFi na śrubie. Moment dokręcenia: 3 Nm
- Zamontowana antena WiFi

# 3.7 Sposoby komunikacji

llustr. 21: Sposoby komunikacji

Falownik PIKO CI posiada interfejsy LAN, RS485 Modbus i WiFi. Istnieją więc różne możliwości podłączenia jednego lub kilku falowników do sieci oraz sterowania nimi.

Można również stosować różne rodzaje połączeń. Na przykład w elektrowni słonecznej może być wskazane połączenie w sieć kilku falowników w terenie w sposób przewodowy (LAN/Ethernet lub RS485) oraz połączenie bezprzewodowe z lokalną centralą komunikacyjną za pomocą łącza radiowego.

## LAN / Ethernet

W przypadku podłączenia do sieci poprzez Ethernet, falownik może być podłączony do sieci lokalnej lub do Internetu. W tym celu należy użyć portu RJ45 na panelu złączy COM2. Do sieci mogą być podłączone komputery, routery, switche i/lub koncentratory oraz inne urządzenia. **Rozdz. 3.8** 

## **RS485 Modbus**

Modbus to standard komunikacji przemysłowej do sieci systemów AKPiA. Za pomocą tego połączenia można na przykład podłączyć rejestrator danych lub licznik energii do sterowania podłączonymi falownikami.

Rozdz. 3.9

## WLAN / WiFi

Poprzez WiFi można zintegrować jeden lub więcej falowników z lokalną siecią WLAN, np. za pomocą routera lub koncentratora. **Rozdz. 3.10** 

### INFORMACJA

Poprzez podłączenie kabla sieciowego do routera falownik włącza się do własnej sieci. Mogą się z nim komunikować wszystkie komputery podłączone do tej samej sieci.

## INFORMACJA

W późniejszym terminie planowane jest również połączenie między falownikami.

# 3.8 Komunikacja przez LAN

llustr. 22: Podłączenie falownika kablem LAN / Ethernet

- 1. Odłączyć falownik od źródła napięcia.
- Przełożyć kabel Ethernet przez pokrywę COM2 i uszczelnić go pierścieniem uszczelniającym i nakrętką mocującą.
- **3.** Nakrętkę mocującą dokręcić z podanym momentem dokręcenia. Moment dokręcenia: 8 Nm (M25).
- Podłączyć kabel Ethernet do jednego z gniazd LAN w panelu złączy COM2. Drugie gniazdo LAN służy do połączenia sieciowego z kolejnymi falownikami.
- 5. Kabel LAN/Ethernet podłączyć do komputera lub routera.

## INFORMACJA

Jako kabla sieciowego (Ethernet 10BaseT, 10/100 Mb/s) należy użyć kabla Ethernet kategorii 7 (Cat 7, FTP) o długości maks. 100 m.

### INFORMACJA

Po uruchomieniu w aplikacji *KOSTAL PIKO CI* można jeszcze wprowadzić ustawienia połączenia Ethernet.

Obejmuje to np. ustawienie trybu IP, w którym można ustawić pobieranie automatycznego adresu IP.  Ustawienie falownika jako Master LAN lub Slave odbywa się poprzez aplikację KOSTAL PIKO CI w każdym falowniku. W tym celu otworzyć punkt menu Ustawienia > Ustawienia komunikacji > Ustawienia Master/Slave > Ustawienia Master/ Slave i następnie wybrać Master LAN lub Slave. Falownik nadrzędny (master) przesyła dane do falowników podrzędnych (slave). Może to być na przykład ograniczenie dostarczania energii do sieci.

Podłączony kabel LAN

# 3.9 Komunikacja przez RS485

llustr. 23: Podłączenie falownika kablem RS485

Aktywacja terminatora RS485 w ostatnim falowniku

## Podłączenie połączenia RS485

- 1. Odłączyć falownik od źródła napięcia. Rozdz. 4.2
- Przełożyć kabel RS485 przez pokrywę COM2 i uszczelnić go pierścieniem uszczelniającym i nakrętką mocującą.
- **3.** Nakrętkę mocującą dokręcić z podanym momentem dokręcenia. Moment dokręcenia: 8 Nm (M25).
- Zamontować kabel RS485 na dołączonym wtyku (RS485 x in) i podłączyć go do portu na panelu złączy COM2. RS485 out służy do połączenia sieciowego z dalszymi falownikami.
- 5. Podłączyć kabel RS485 do urządzenia zewnętrznego (np. rejestratora danych).
- Ustawienie falownika jako Master RS485 lub Slave odbywa się poprzez aplikację KOSTAL PIKO CI App w każdym falowniku. W tym celu otworzyć punkt menu Ustawienia > Ustawienia komunikacji > Ustawienia Master/Slave > Ustawienia Master/ Slave i następnie wybrać Master RS485 lub Slave. Falownik nadrzędny (master) przesyła dane do falowników podrzędnych (slave). Może to być na przykład ograniczenie dostarczania energii do sieci.
- Terminator RS485 ostatniego falownika musi być ustawiony w aplikacji KOSTAL PIKO CI na ON. Można to zrobić w punkcie Ustawienia > Ustawienia komunikacji > Ustawienia RS485 > Terminator.
- ✓ Podłączony kabel RS485

### INFORMACJA

Wymagania dotyczące kabla komunikacyjnego:

- Przekrój kabla:
  0,34 1,5 mm<sup>2</sup> (drut)
  0,34 1,0 mm<sup>2</sup> (linka)
- Długość szyny maks. 1000
- Długość odizolowania ok. 5 mm

#### **INFORMACJA**

Po uruchomieniu należy jeszcze dokonać ustawień połączenia RS485 w aplikacji *KOSTAL PIKO CI*. Obejmuje to np. ustawienie prędkości transmisji.

# 3.10 Komunikacja przez WiFi

llustr. 24: Podłączanie falowników przez WiFi

- 1 Ustawienia WiFi
- Po uruchomieniu należy skonfigurować ustawienia WiFi w aplikacji KOSTAL PIKO CI w każdym falowniku.
- W tym celu otworzyć poniższy punkt menu i dokonać ustawień:
  Ustawienia > Ustawienia komunikacji > Ustawienia WLAN > Wybierz połączenie WLAN
- Falownik połączony przez WiFi

## INFORMACJA

W razie zapomnienia hasła do sieci WLAN można przywrócić hasło 12345678 za pomocą przycisku pod pokrywą COM2.

# 3.11 Podłączenie licznika KOSTAL Smart Energy Meter

Podłączenie licznika KOSTAL Smart Energy Meter umożliwia rejestrację ilości wytwarzanej energii i wartości zużycia lub sterowanie mocą wyjściową falownika do publicznej sieci energetycznej. Dodatkowo licznik KOSTAL Smart Energy Meter może wysyłać dane do KOSTAL Solar Portal. W tym celu KOSTAL Smart Energy Meter PIKO CI musi być skonfigurowany poza PIKO CI w tym samym systemie w KOSTAL Solar Portal.

Licznik energii montuje się w szafie licznikowej lub w rozdzielni głównej. Zapoznać się również z dokumentacją eksploatacyjną licznika KOSTAL Smart Energy Meter.

Licznik KOSTAL Smart Energy Meter można podłączyć do PIKO CI na dwa różne sposoby. Sposób podłączenia należy ustawić następnie w aplikacji KOSTAL PIKO CI.

- "Połączenie komunikacyjne KOSTAL Smart Energy Meter poprzez sieć LAN"
- "Połączenie komunikacyjne KOSTAL Smart Energy Meter poprzez RS485"

#### WAŻNA INFORMACJA

Można używać tylko liczników energii dopuszczonych do tego falownika.

Aktualną listę dopuszczonych liczników energii można znaleźć na naszej stronie internetowej w sekcji materiałów do pobrania.

Aktualnie są dopuszczone następujące liczniki energii:

KOSTAL Smart Energy Meter

Połączenie komunikacyjne KOSTAL Smart Energy Meter poprzez sieć LAN

llustr. 25: Schemat połączeń licznika energii LAN – podłączenie do sieci

- 1 Falownik
- 2 Złącze LAN falownika
- 3 KOSTAL Smart Energy Meter
- 4 Złącze LAN KOSTAL Smart Energy Meter
- 5 Licznik energii oddanej
- 6 Sieć elektroenergetyczna
- Przeczytać instrukcję licznika KOSTAL Smart Energy Meter.
- Dla prądów powyżej 63 A należy stosować przekładniki prądowe. Przeczytać instrukcję obsługi licznika KOSTAL Smart Energy Meter

## Podłączenie licznika KOSTAL Smart Energy Meter

- 1. Odłączyć przewód zasilający od źródła napięcia.
- 2. Zainstalować licznik KOSTAL Smart Energy Meter w punkcie podłączenia do sieci domowej jak pokazano na ilustracjach.
- Przełożyć kabel Ethernet w falowniku przez pokrywę COM2 i uszczelnić go pierścieniem uszczelniającym i nakrętką mocującą. Nakrętkę mocującą dokręcić z podanym momentem dokręcenia. Moment dokręcenia: 8 Nm (M25).

## NIEBEZPIECZEŃSTWO

ZAGROŻENIE ŻYCIA POPRZEZ PORAŻENIE PRĄDEM ELEK-TRYCZNYM I WYŁADOWANIE ELEKTROSTATYCZNE!

Odłączyć wszystkie urządzenia od źródła napięcia i zabezpieczyć przed ponownym włączeniem.

## INFORMACJA

Wymagania dotyczące kabla LAN:

- CAT7
- Długość maks. 100
- Podłączyć kabel Ethernet do jednego z gniazd LAN w panelu złączy COM2. Drugie gniazdo LAN służy do połączenia sieciowego z kolejnymi falownikami.
- 5. Zamontować zaślepkę COM 2. Moment dokręcenia: 1,5 Nm
- 6. Podłączyć drugi koniec kabla Ethernet do routera.

- **7.** Nawiązać połączenie LAN licznika KOSTAL Smart Energy Meter z routerem.
- W tym przypadku licznik KOSTAL Smart Energy Meter działa jako urządzenie podrzędne i przesyła dane do falownika.
- W liczniku KOSTAL Smart Energy Meter w punkcie Ustawienia Modbus > Modbus TCP > Slave (Aktywuj TCP slave) ustawić na ON.
- Aby zużycie domowe było widoczne w KOSTAL Solar Portal, należy w KOSTAL Smart Energy Meter w punkcie Falownik > Portal solarny > Aktywuj portal solarny ustawić na ON.

Po uruchomieniu należy dokonać następujących ustawień w *aplikacji KOSTAL PIKO CI*.

 Zastosowanie i pozycja montażu licznika KOSTAL Smart Energy Meter (KSEM) muszą być ustawione w aplikacji KOSTAL PIKO CI w falowniku master. Można to ustawić w punkcie Ustawienia > Ustawienia falownika > Dopasowanie/regulacja mocy > Zarządzanie energią > Funkcja ograniczenia mocy > KSEM oraz Ustawienia > Ustawienia falownika > Dopasowanie/regulacja mocy > Zarządzanie energią > Pozycja czujnika > Punkt podłączenia do sieci

- (wartość standardowa).
- Adres IP licznika KOSTAL Smart Energy Meter można ustawić w aplikacji KOSTAL PIKO CI w punkcie Ustawienia > Dopasowanie/regulacja mocy > Zarządzanie energią > Adres IP licznika energii.

- Ograniczenie mocy dostarczania energii do sieci (np. do 70 %) należy wprowadzić w watach w falowniku *Master*. Można to ustawić w punkcie *Ustawienia > Ustawienia falownika > Dopasowanie/regulacja mocy > Zarządzanie energią > Ograniczenie mocy czynnej do (W).*
- Licznik KOSTAL Smart Energy Meter jest podłączony do falownika master. Jeśli nie zostało to jeszcze zrobione, falownik ten musi zostać skonfigurowany jako Master LAN. Można to wybrać w aplikacji KOSTAL PIKO CI w punkcie Ustawienia > Ustawienia komunikacji > Ustawienia Master/Slave > Master LAN.
- Wszystkie pozostałe falowniki podłączone do falownika Master muszą być skonfigurowane jako urządzenia Slave. Dla wszystkich falowników Slave należy sprawdzić następujące ustawienia fabryczne: Ustawienia Master/Slave: Slave Funkcja ograniczenia mocy: nieaktywna Pozycja czujnika: Punkt podłączenia do sieci Aktywuj odbiornik do zdalnego sterowania: OFF
- Falownik podłączony do licznika KOSTAL Smart Energy Meter.

### INFORMACJA

Jeżeli ograniczenie mocy jest realizowane w połączeniu z licznikiem KOSTAL Smart Energy Meter, ograniczenie mocy poprzez odbiornik do zdalnego sterowania jest niemożliwe i musi zostać wyłączone.

## Połączenie komunikacyjne KOSTAL Smart Energy Meter poprzez RS485

llustr. 26: Schemat podłączenia licznika energii RS485 – podłączenie do sieci

## 1 Falownik

- 2 Port RS485 falownika
- Port RS485 licznika KOSTAL Smart Energy Meter
- 4 KOSTAL Smart Energy Meter
- 5 Licznik energii oddanej
- 6 Sieć elektroenergetyczna
- Przeczytać instrukcję obsługi licznika KOSTAL Smart Energy Meter
- Ustawić terminator RS485 w aplikacji KOSTAL PIKO CI na ON
- Dla prądów powyżej 63 A należy stosować przekładniki prądowe. Przeczytać instrukcję obsługi licznika KOSTAL Smart Energy Meter

## Podłączenie licznika KOSTAL Smart Energy Meter

- 1. Odłączyć przewód zasilający od źródła napięcia.
- Zainstalować licznik KOSTAL Smart Energy Meter w punkcie podłączenia do sieci domowej jak pokazano na ilustracjach.
- Ułożyć fachowo kabel komunikacyjny od falownika do szafy sterowniczej i podłączyć go do licznika KOSTAL Smart Energy Meter zgodnie ze schematem podłączenia producenta.
- Kabel komunikacyjny przeprowadzić przez pokrywę falownika dla panelu złączy COM2. Uszczelnić przyłącze za pomocą pierścienia uszczelniającego i nakrętki mocującej.

NIEBEZPIECZEŃSTWO

ZAGROŻENIE ŻYCIA POPRZEZ PORAŻENIE PRĄDEM ELEK-TRYCZNYM I WYŁADOWANIE ELEKTROSTATYCZNE!

Odłączyć wszystkie urządzenia od źródła napięcia i zabezpieczyć przed ponownym włączeniem.

### INFORMACJA

Wymagania dotyczące kabla komunikacyjnego:

- Przekrój kabla:
  0,34 1,5 mm<sup>2</sup> (drut)
  0,34 1,0 mm<sup>2</sup> (linka)
- Długość szyny maks. 1000 m
- Długość odizolowania ok. 5 mm

- Podłączyć kabel komunikacyjny do złącza interfejsu komunikacyjnego. Zwrócić uwagę na przyporządkowanie pinów. Moment dokręcenia: 0,2 Nm.
- 6. Podłączyć złącze falownika do interfejsu komunikacyjnego na panelu złączy COM2.
- 7. Wykonać podłączenie LAN do sieci Internet licznika KOSTAL Smart Energy Meter i falownika.
- W tym przypadku licznik KOSTAL Smart Energy Meter działa jako urządzenie podrzędne i przesyła dane do falownika.
- W liczniku KOSTAL Smart Energy Meter wybrać PIKO CI do portu RS485 A. Informacje na ten temat znajdują się w instrukcji obsługi licznika KOSTAL Smart Energy Meter.
- **10.** Zamontować zaślepkę COM 2. Moment dokręcenia: 1,5 Nm

Po uruchomieniu należy dokonać następujących ustawień w *aplikacji KOSTAL PIKO CI*.

 Zastosowanie i pozycja montażu licznika KOSTAL Smart Energy Meter (KSEM) muszą być ustawione w aplikacji KOSTAL PIKO CI w falowniku master. Można to ustawić w punkcie Ustawienia > Ustawienia falownika > Dopasowanie/regulacja mocy > Zarządzanie energią > Funkcja ograniczenia mocy > KSEM oraz Ustawienia > Ustawienia falownika > Dopasowanie/regulacja mocy > Zarządzanie energią > Pozycja czujnika > Punkt podłączenia do sieci.  Ograniczenie mocy dostarczania do sieci (np. do 70 %) należy wprowadzić w watach na falowniku *Master*.

Można to ustawić w punkcie Ustawienia > Ustawienia falownika > Dopasowanie/regulacja mocy > Zarządzanie energią > Ograniczenie mocy czynnej do [W].

 Falownik, do którego podłączony jest licznik KOSTAL Smart Energy Meter, musi być skonfigurowany jako Master.

Można to wybrać w punkcie Ustawienia > Ustawienia komunikacji > Ustawienia Master/Slave > Master RS485.

- W falowniku *Master* podłączonym do przewodu komunikacyjnego RS485 ustawić terminator RS485 w aplikacji *KOSTAL PIKO CI* na *ON*.
  Można to zrobić w punkcie *Ustawienia* > Ustawienia komunikacji > Ustawienia RS485 > Terminator.
- Wszystkie pozostałe falowniki podłączone do falownika Master w sieci LAN muszą być skonfigurowane jako urządzenia *Slave*. Dla wszystkich falowników Slave należy sprawdzić następujące ustawienia fabryczne:

Ustawienia Master/Slave: Slave Funkcja ograniczenia mocy: nieaktywna Pozycja czujnika: Punkt podłączenia do sieci Aktywuj odbiornik do zdalnego sterowania: OFF

 Falownik podłączony do licznika KOSTAL Smart Energy Meter.

### INFORMACJA

Jeżeli ograniczenie mocy jest realizowane w połączeniu z licznikiem KOSTAL Smart Energy Meter, ograniczenie mocy poprzez odbiornik do zdalnego sterowania jest niemożliwe i musi zostać wyłączone.

# 3.12 Podłączenie centralnej ochrony sieci i instalacji

Ilustr. 27: Centralna ochrona sieci i instalacji z wyłącznikiem sieciowym

- 1 Falownik PIKO CI
- 2 Podłączenie
- Ochrona sieci i instalacji Przełącznik zamknięty: Dostarczanie energii do sieci Przełącznik otwarty: Dostarczanie energii niemożliwe
- Aktywacja ochrony sieci i instalacji w aplikacji **KOSTAL PIKO CI**.

W niektórych krajach obowiązkowym wyposażeniem jest centralna ochrona sieci i instalacji, która monitoruje napięcie i częstotliwość w sieci, a w razie wystąpienia nieprawidłowości poprzez wyłącznik sieciowy odłącza instalacje fotowoltaiczne.

Jeśli dostawca energii elektrycznej wymaga centralnej ochrony sieci i instalacji, należy zainstalować zewnętrzne urządzenie monitorujące, które wyłącza falownik przez styk zwierny lub rozwierny. Dodatkowy wyłącznik sieciowy nie jest konieczny, ponieważ nie jest on wymagany przez wewnętrzne przełączniki falownika.

- 1. Odłączyć przewód zasilający od źródła napięcia.
- 2. Zamontować urządzenie monitorujące w szafie sterowniczej lub rozdzielnicy elektrycznej.
- Ułożyć fachowo kabel komunikacyjny od falownika do szafy sterowniczej i podłączyć go zgodnie ze schematem podłączenia producenta.
- 4. Przełożyć kabel komunikacyjny przez pokrywę panelu złączy COM2. Uszczelnić przyłącze za pomocą pierścienia uszczelniającego i nakrętki mocującej.
- Podłączyć kabel komunikacyjny do złącza interfejsu komunikacyjnego. Zwrócić uwagę na przyporządkowanie pinów. Moment dokręcenia: 0,2 Nm.

### NIEBEZPIECZEŃSTWO

ZAGROŻENIE ŻYCIA POPRZEZ PORAŻENIE PRĄDEM ELEK-TRYCZNYM I WYŁADOWANIE ELEKTROSTATYCZNE!

Odłączyć wszystkie urządzenia od źródła napięcia i zabezpieczyć przed ponownym włączeniem.

### INFORMACJA

Wymagania dotyczące kabla komunikacyjnego:

- Przekrój kabla:
  0,34 1,5 mm<sup>2</sup> (drut)
  0,34 1,0 mm<sup>2</sup> (linka)
- Długość maks. 30
- Długość odizolowania ok. 5 mm

6. Podłączyć złącze falownika do interfejsu komunikacyjnego na panelu złączy COM2.

llustr. 28: Centralna ochrona instalacji – podłączenie

- Panel złączy COM2
- 2 Interfejs komunikacyjny
- 3 Złącze
- Po uruchomieniu funkcja ta musi być aktywowana w każdym falowniku w aplikacji KOSTAL PIKO CI. Można to aktywować w punkcie Ustawienia > Ustawienia podstawowe > Wyłączenie zewnętrzne > ON.
- ✓ Falownik skonfigurowany do funkcji NAS.

# 3.13 Podłączenie odbiornika do zdalnego sterowania

Ilustr. 29: Podłączenie odbiornika do zdalnego sterowania

- Falownik, do którego jest podłączany odbiornik do zdalnego sterowania
- Panel złączy COM2
- 3 Wtyk interfejsu komunikacyjnego
- Odbiornik do zdalnego sterowania
- Aktywacja odbiornika do zdalnego sterowania w aplikacji KOSTAL PIKO CI
- Aktywacja trybu komunikacji (LAN lub RS485) w aplikacji *PIKO KOSTAL CI*
- Aktywacja wartości przełączania odbiornika do zdalnego sterowania w aplikacji KOSTAL PIKO CI

Niektóre zakłady energetyczne (ZE) oferują użytkownikom instalacji fotowoltaicznych możliwość regulacji instalacji poprzez zmienne sterowanie mocą czynną, zwiększając w ten sposób oddawanie energii do sieci elektroenergetycznej nawet do 100 %.

Należy uzgodnić z zakładem energetycznym lub instalatorem, jakie są obowiązujące zasady lub czy istnieje lepsza alternatywa (np. inteligentny licznik).

Jeśli w sieci domowej jest już podłączony odbiornik do zdalnego sterowania do innego falownika KOSTAL, istnieje możliwość wykorzystania sygnałów sterujących z tego odbiornika.

#### **INFORMACJA**

W niektórych zastosowaniach cyfrowy licznik KOSTAL Smart Energy Meter może być ekonomiczną alternatywą dla odbiornika do zdalnego sterowania. Energia dostarczana do sieci jest wprawdzie ograniczana przez zakład energetyczny, lecz falownik steruje przepływem energii (zużycie własne w sieci domowej i dostawy do sieci) w taki sposób, aby w jak najmniejszym stopniu lub wcale nie tracić wytworzonej energii.

- 1. Odłączyć przewód zasilający od źródła napięcia.
- Odbiornik do sterowania zdalnego zamontować w szafie sterowniczej lub rozdzielnicy elektrycznej.
- Ułożyć fachowo kabel komunikacyjny od falownika do szafy sterowniczej i podłączyć go zgodnie ze schematem podłączenia producenta.
- Przełożyć kabel komunikacyjny przez pokrywę panelu złączy COM2. Uszczelnić przyłącze za pomocą pierścienia uszczelniającego i nakrętki mocującej.
- Podłączyć kabel komunikacyjny do złącza interfejsu komunikacyjnego. Zwrócić uwagę na przyporządkowanie pinów. Moment dokręcenia: 0,2 Nm.
- 6. Podłączyć złącze falownika do interfejsu komunikacyjnego na panelu złączy COM2.
- Otworzyć aplikację KOSTAL PIKO CI i połączyć się z falownikiem, do którego jest podłączony odbiornik do zdalnego sterowania.
- 8. Aktywować odbiornik do zdalnego sterowania w aplikacji KOSTAL PIKO CI w punkcie Ustawienia > Ustawienia falownika > Dopasowanie/regulacja mocy > Zdalne sterowanie > Aktywuj odbiornik do zdalnego sterowania > ON
- Ustawić wartości przełączania dla odbiornika do zdalnego sterowania w punkcie Ustawienia > Ustawienia falownika > Dopasowanie/regulacja mocy > Zdalne sterowanie > RCR moc czynna / RCR moc bierna / RCR współczynnik mocy.
- W punkcie Ustawienia > Ustawienia komunikacji > Ustawienia Master/Slave > Ustawienia Master/ Slave > Master ustawić komunikację (LAN lub RS485) falownika master z pozostałymi falownikami.

Odbiornik do zdalnego sterowania jest podłączony

### NIEBEZPIECZEŃSTWO

ZAGROŻENIE ŻYCIA POPRZEZ PORAŻENIE PRĄDEM ELEK-TRYCZNYM I WYŁADOWANIE ELEKTROSTATYCZNE!

Odłączyć wszystkie urządzenia od źródła napięcia i zabezpieczyć przed ponownym włączeniem.

### INFORMACJA

Wymagania dotyczące kabla komunikacyjnego:

- Przekrój kabla:
  0,34 1,5 mm<sup>2</sup> (drut)
  0,34 1,0 mm<sup>2</sup> (linka)
- Długość maks. 30
- Długość odizolowania ok. 5 mm

# 3.14 Zamknięcie falownika

- 1. Dokręcić wszystkie przepusty kablowe, zwracając uwagę na dobre uszczelnienie.
- 2. Sprawdzić dobre osadzenie podłączonych żył i przewodów.
- **3.** Usunąć z falownika przedmioty obce (narzędzia, resztki przewodów itp.).
- 4. Zamontować i dokręcić pokrywę.
- 5. W falowniku PIKO CI 50 / 60 zamontować i przykręcić (1,5 Nm) pokrywę.

# 3.15 Podłączanie paneli PV

Ilustr. 30: Możliwe panele PV

## Możliwe do podłączenia panele słoneczne

Przy wyborze paneli PV podłączanych do falownika PIKO CI należy zwrócić uwagę na następujące kwestie:

- Podłączać tylko panele PV zgodne z IEC 61730 klasa A
- Nie uziemiać przewodów PV.
- Do podłączenia paneli PV używać odpowiednich kabli o możliwie największym przekroju!
- Dla każdego układu śledzenia MPP:
  Do układu śledzenia MPP podłączać wyłącznie panele PV tego samego typu, tzn.:
  - tego samego producenta
  - tego samego typu
  - tej samej mocy
  - tej samej wielkości

Do różnych układów śledzenia MPP można podłączać panele PV różnego typu, różnej wielkości, o różnej mocy przyłączeniowej, jak również różną liczbę paneli PV.

Nie można przekraczać maksymalnego prądu wejściowego (I<sub>DCmax</sub>) na każdy MPPT i maksymalnego prądu DC na każde złącze DC (I<sub>Stringmax</sub>) (patrz dane techniczne

## Rozdz. 8.1).

WAŻNA INFORMACJA

Stosować kable elastyczne i ocynowane o podwójnej izolacji wg EN50618.

Zalecamy kable o przekroju 6 mm<sup>2</sup>.

Należy przestrzegać danych producenta wtyczki oraz danych technicznych falownika.

## Złącza paneli słonecznych

Przed podłączeniem paneli PV należy zwrócić uwagę na poniższe punkty:

- W celu optymalnego doboru paneli fotowoltaicznych i uzyskania jak najwyższego uzysku należy skorzystać z naszego narzędzia do projektowania KOSTAL Solar Plan.
- Sprawdzić prawidłowość projektu i okablowania paneli.
- Zmierzyć i zaprotokołować napięcie jałowe DC oraz polaryzację paneli PV. Napięcie jałowe paneli PV musi mieścić się w zakresie od U<sub>DCstart</sub> do U<sub>DCmax</sub>.

| ΡΙΚΟ CΙ | U <sub>DCStart</sub> | U <sub>DCmax</sub> |
|---------|----------------------|--------------------|
| 30      | ≥ 250 V              | ≤ 1000 V           |
| 50/60   | ≥ 250 V              | ≤ 1100 V           |

- Upewnić się, że maksymalny prąd zwarciowy paneli PV jest mniejszy od dopuszczalnej wartości.
- Upewnić się, że panele PV nie są zwarte.
- Po podłączaniu paneli PV falownik musi być zamknięty.
- Należy zwrócić uwagę na to, aby przy podłączaniu kilku falowników nie doszło do krzyżowego połączenia paneli PV.

W przeciwnym razie następuje utrata gwarancji, rękojmi i odpowiedzialności producenta.

#### NIEBEZPIECZEŃSTWO

ZAGROŻENIE ŻYCIA POPRZEZ PORAŻENIE PRĄDEM ELEK-TRYCZNYM I WYŁADOWANIE ELEKTROSTATYCZNE!

Gdy tylko na generatory/przewody PV pada światło, mogą znajdować się pod napięciem.

### OSTRZEŻENIE

CIĘŻKIE POPARZENIA PRZEZ ŁUKI ELEKTRYCZNE PO STRONIE DC!

Podczas pracy mogą wystąpić niebezpieczne łuki elektryczne podczas wyciągania lub podłączania przyłączy DC. Przed podłączeniem wtyków DC należy odłączyć stronę DC od źródła napięcia. Wyłączniki DC muszą być ustawione w pozycji OFF.

#### OSTRZEŻENIE

ZAGROŻENIE POŻAROWE W WYNI-KU NIEWŁAŚCIWEGO MONTAŻU!

Zamontowane nieprawidłowo wtyki i gniazda mogą się nagrzać i spowodować pożar. Przy montażu należy koniecznie przestrzegać zaleceń i instrukcji producenta. Wtyki i gniazda zamontować prawidłowo.

## Przygotowanie złączy PV

W falownikach PIKO CI zastosowano złącza Helios H4 firmy Amphenol.

- Podczas montażu urządzenia należy koniecznie przestrzegać aktualnych specyfikacji producenta. 1
- Należy używać wyłącznie narzędzi montażowych producenta.
- Podczas montażu gniazd i wtyków należy upewnić się, że panele słoneczne mają właściwą polaryzację.

<sup>1</sup> Informacje na temat montażu złączy Amphenol można znaleźć na stronie: www.amphenol.com

## Montaż złączy PV

- 1. Kabel solarny odizolować na długości ok. 9 mm.
- Włożyć odizolowany koniec przewodu do zacisku styku.

**3.** Zacisnąć styk za pomocą odpowiedniej praski zaciskowej.

**4.** Włożyć styk do złącza, aż styk zatrzaśnie się w miejscu z wyczuwalnym i słyszalnym kliknięciem.

#### NIEBEZPIECZEŃSTWO

ZAGROŻENIE ŻYCIA POPRZEZ PORAŻENIE PRĄDEM ELEK-TRYCZNYM I WYŁADOWANIE ELEKTROSTATYCZNE!

Odłączyć przewody DC poprzez przerwanie połączeń z panelami PV.

Jeśli nie jest możliwe odłączenie przewodów DC, należy przestrzegać zasad pracy pod napięciem. Używać środków ochrony indywidualnej, kasku, przyłbicy lub okularów ochronnych, kombinezonu ochronnego, rękawic izolacyjnych. Jako podkład należy użyć izolacyjnej maty ochronnej. Należy używać wyłącznie narzędzi izolowanych.

#### INFORMACJA

Po zatrzaśnięciu w obudowie styku nie można już wypiąć ze złącza.

5. Dokręcić nakrętkę na złączu (3 Nm).

✓ Złącze PV zamontowane

## Wybór wejść PV

Jeśli nie są zajęte wszystkie wejścia DC falownika, należy rozdzielić wykorzystanie wejść zgodnie z poniższymi tabelami. Nie można przekraczać maksymalnego prądu wejściowego (I<sub>IDCmax</sub>) na każdy MPPT i maksymalnego prądu DC na każde złącze DC (I<sub>Stringmax</sub>):

Poniższe tabele obowiązują od numeru katalogowego:

- PIKO CI 30: 10534223
- PIKO CI 50: 10534084
- PIKO CI 60: 10534085

## Maksymalny prąd wejściowy

| ΡΙΚΟ CΙ | U <sub>DCmax</sub> | I <sub>DCmax</sub> na układ śledzenia<br>MPP                             | Stringmax |
|---------|--------------------|--------------------------------------------------------------------------|-----------|
| 30      | ≤ 1000 V           | ≤ DC 1-3: 40,5 A<br>≤ DC 4-6: 40,5 A                                     | ≤ 14 A    |
| 50/60   | ≤ 1100 V           | ≤ DC 2-4: 39 A<br>≤ DC 6-8: 39 A<br>≤ DC 10-11: 26 A<br>≤ DC 13-14: 26 A | ≤ 18 A    |
| 50/60   | ≤ 1100 V           | ≤ DC 2-4: 39 A<br>≤ DC 6-8: 39 A<br>≤ DC 9-11: 39 A<br>≤ DC 12-14: 39 A  | ≤ 18 A    |

# Przyłącze DC PIKO CI 30 o numerze katalogowym 10534223

|                                       | Podłączone<br>stringi PV | Układ śledzenia MPP                 |                   |  |
|---------------------------------------|--------------------------|-------------------------------------|-------------------|--|
| PIKO CI                               |                          | 1                                   | 2                 |  |
|                                       |                          | Używane wejście DC                  |                   |  |
|                                       | 1                        | 16                                  |                   |  |
| 30                                    | 2                        | 1                                   | 4                 |  |
|                                       | 3                        | 1, 2                                | 4                 |  |
|                                       | 4                        | 1, 2                                | 4, 5              |  |
|                                       | 5                        | 1, 2, 3 <sup>(1)</sup>              | 4, 5              |  |
|                                       | 6                        | 1, 2, 3 <sup>(1)</sup>              | 4, 5, 6 (1)       |  |
| <sup>(1)</sup> Przy poo<br>wejście D0 | dłączonych 3 str<br>C.   | ingach DC, I <sub>Stringmax</sub> ≤ | : 13,5 A na każde |  |

#### **INFORMACJA**

Do układu śledzenia MPP można podłączać wyłącznie panele PV tego samego typu, tzn.

- tego samego producenta,
- tego samego typu,
- tej samej mocy,
- tej samej wielkości.
### Przyłącze DC PIKO CI 50 o numerze katalogowym 10534084 i PIKO CI 60 o numerze katalogowym 10534085

|         | Podłączone<br>stringi PV | Układ śledzenia MPP |                    |                         |                           |  |
|---------|--------------------------|---------------------|--------------------|-------------------------|---------------------------|--|
| PIKO CI |                          | 1                   | 2                  | 3                       | 4                         |  |
|         |                          |                     | Używane wejście DC |                         |                           |  |
|         | 1                        |                     | 210/12             |                         |                           |  |
|         | 2                        | 2                   | 6                  |                         |                           |  |
|         | 3                        | 2                   | 6                  | 10                      |                           |  |
|         | 4                        | 2                   | 6                  | 10                      | 13                        |  |
| 50/60   | 5                        | 2, 3                | 6                  | 10                      | 13                        |  |
| 50/60   | 6                        | 2, 3                | 6, 7               | 10                      | 13                        |  |
|         | 7                        | 2, 3                | 6, 7               | 10, 11 <sup>(2)</sup>   | 13                        |  |
| 60      | 8                        | 2, 3                | 6, 7               | 10, 11 <sup>(2)</sup>   | 13, 14 <sup>(2)</sup>     |  |
|         | 9                        | 2, 3, 4(1)          | 6, 7               | 10, 11 <sup>(2)</sup>   | 13, 14 <sup>(2)</sup>     |  |
|         | 10                       | 2, 3, 4(1)          | 6, 7, 8(1)         | 10, 11 <sup>(2)</sup>   | 13, 14 <sup>(2)</sup>     |  |
|         | 11                       | 2, 3, 4(1)          | 6, 7, 8(1)         | 9,10, 11 <sup>(1)</sup> | 12, 13 <sup>(2)</sup>     |  |
|         | 12                       | 2, 3, 4(1)          | 6, 7, 8(1)         | 9,10, 11 <sup>(1)</sup> | 12, 13, 14 <sup>(1)</sup> |  |
|         |                          |                     |                    |                         |                           |  |

 $^{(1)}$  Przy podłączonych 3 stringach DC,  $\rm I_{Stringmax} \leq 13$  A na każde wejście DC.

 $^{(2)}$  Jeżeli do PIKO CI 50 podłączone są 2 stringi DC,  $I_{Stringmax}$  musi wynosić  $\leq$  13 A na każde wejście DC.

Poniższe tabele odnoszą się do numerów katalogowych:

- PIKO CI 30: 10523267
- PIKO CI 50: 10523268
- PIKO CI 60: 10523269

### Maksymalny prąd wejściowy

| PIKO CI |          | I <sub>DCmax</sub> na układ śledzenia<br>MPP                             | <b>I</b><br>Stringmax |
|---------|----------|--------------------------------------------------------------------------|-----------------------|
| 30      | ≤ 1000 V | ≤ DC 1-3: 37,5 A<br>≤ DC 4-6: 37,5 A                                     | ≤ 14 A                |
| 50/60   | ≤ 1100 V | ≤ DC 2-4: 33 A<br>≤ DC 6-8: 33 A<br>≤ DC 10-11: 22 A<br>≤ DC 13-14: 22 A | ≤ 14 A                |
| 50/60   | ≤ 1100 V | ≤ DC 2-4: 33 A<br>≤ DC 6-8: 33 A<br>≤ DC 9-11: 33 A<br>≤ DC 12-14: 33 A  | ≤ 14 A                |

## Przyłącze DC PIKO CI 30 o numerze katalogowym 10523267

|  |                                                                                                     | Deallerener              | Układ śledzenia MPP    |             |  |
|--|-----------------------------------------------------------------------------------------------------|--------------------------|------------------------|-------------|--|
|  | <b>PIKO CI</b>                                                                                      | Podłączone<br>stringi PV | 1                      | 2           |  |
|  |                                                                                                     | Sungriv                  | Używane                | wejście DC  |  |
|  |                                                                                                     | 1                        | 1.                     | 6           |  |
|  |                                                                                                     | 2                        | 1                      | 4           |  |
|  | 20                                                                                                  | 3                        | 1, 2                   | 4           |  |
|  | 30                                                                                                  | 4                        | 1, 2                   | 4, 5        |  |
|  |                                                                                                     | 5                        | 1, 2, 3 <sup>(1)</sup> | 4, 5        |  |
|  |                                                                                                     | 6                        | 1, 2, 3 <sup>(1)</sup> | 4, 5, 6 (1) |  |
|  | $^{(1)}$ Przy podłączonych 3 stringach DC, $\rm I_{\rm Stringmax} \leq 12,5$ A na każde wejście DC. |                          |                        |             |  |

### Przyłącze DC PIKO CI 50 o numerze katalogowym 10523268 i PIKO CI 60 o numerze katalogowym 10523269

|         |                          | Układ sledzenia MPP |            |                         |                           |  |
|---------|--------------------------|---------------------|------------|-------------------------|---------------------------|--|
| PIKO CI | Podłączone<br>stringi PV | 1                   | 2          | 3                       | 4                         |  |
|         | ounigi i v               |                     | Używar     | ne wejście              | DC                        |  |
|         | 1                        |                     | 210/12     |                         |                           |  |
|         | 2                        | 2                   | 6          |                         |                           |  |
|         | 3                        | 2                   | 6          | 10                      |                           |  |
|         | 4                        | 2                   | 6          | 10                      | 13                        |  |
| 50/60   | 5                        | 2,3                 | 6          | 10                      | 13                        |  |
| 50/60   | 6                        | 2, 3                | 6, 7       | 10                      | 13                        |  |
|         | 7                        | 2, 3                | 6, 7       | 10, 11 <sup>(2)</sup>   | 13                        |  |
|         | 8                        | 2, 3                | 6, 7       | 10, 11 <sup>(2)</sup>   | 13, 14(2)                 |  |
| 60      | 9                        | 2, 3, 4(1)          | 6, 7       | 10, 11 <sup>(2)</sup>   | 13, 14(2)                 |  |
|         | 10                       | 2, 3, 4(1)          | 6, 7, 8(1) | 10, 11 <sup>(2)</sup>   | 13, 14 <sup>(2)</sup>     |  |
|         | 11                       | 2, 3, 4(1)          | 6, 7, 8(1) | 9,10, 11 <sup>(1)</sup> | 12, 13 <sup>(2)</sup>     |  |
|         | 12                       | 2, 3, 4(1)          | 6, 7, 8(1) | 9,10, 11 <sup>(1)</sup> | 12, 13, 14 <sup>(1)</sup> |  |
|         |                          |                     |            |                         |                           |  |

 $^{(1)}$  Przy podłączonych 3 stringach DC,  $\rm I_{Stringmax} \leq 11$  A na każde wejście DC.

 $^{(2)}$  Jeżeli do PIKO CI 50 podłączone są 2 stringi DC,  $I_{Stringmax}$  musi wynosić  $\leq$  11 A na każde wejście DC.

### Podłączanie paneli PV do falownika

Przewody DC paneli fotowoltaicznych nie mogą być podłączane do falownika pod obciążeniem .

- 1. Odłączyć przyłącze AC falownika poprzez wyłączenie wyłącznika nadmiarowo-prądowego.
- 2. Ustawić wyłączniki DC w falowniku w pozycji "OFF".
- **3.** Przed podłączeniem należy sprawdzić polaryzację przewodów DC .

#### NIEBEZPIECZEŃSTWO

ZAGROŻENIE ŻYCIA POPRZEZ PORAŻENIE PRĄDEM ELEK-TRYCZNYM I WYŁADOWANIE ELEKTROSTATYCZNE!

Wyłączyć falownik po stronie AC i DC.

#### INFORMACJA

Przestrzegać przepisów krajowych! Zwłaszcza we Francji wymagane jest np. umieszczenie na falowniku i przewodach specjalnego oznakowania.

Instalator jest odpowiedzialny za zakup i naklejenie wymaganych oznaczeń.

#### **INFORMACJA**

Zaślepki ochronne przyłączy PV należy zachować.

4. Zdjąć zaślepki ochronne z zacisków wejściowych

 Złącza poszczególnych stringów PV podłączyć parami do wejść DC PV+ i PV- z wyczuwalnym i słyszalnym kliknięciem.

✓ Panele PV są podłączone.

## 3.16 Pierwsze uruchomienie

Uruchomienie i ustawienie niezbędnych parametrów roboczych odbywa się bezprzewodowo za pomocą aplikacji *KOSTAL PIKO CI* oraz tableta lub smartfona.

#### Instalacja aplikacji KOSTAL PIKO CI

 Pobrać aplikację KOSTAL PIKO CI z Apple App Store lub Google Play Store na tablet lub smartfon.

### Połączenie falownika z aplikacją

- Włączyć funkcję WiFi/WLAN na tablecie lub smartfonie.
- 2. Otworzyć ustawienia WiFi/WLAN.
- 3. Włączyć falownik.
- Zanotować typ i numer seryjny uruchamianego falownika. Dane te znajdują się na tabliczce znamionowej.
- Wyszukać sieć WLAN falownika na tablecie lub smartfonie i wybrać ją.
   SSID falownika składa się z typu i numeru seryjnego falownika.
   Przykład: PIKO CI 50 12345678
- 6. Wpisać jako hasło: 12345678 i potwierdzić.
- Pojawi się pytanie o stałe połączenie z siecią, na które należy odpowiedzieć twierdząco.
- 8. Uruchomić aplikację.
- → W aplikacji zostaną wyświetlone znalezione falowniki.
- 9. Wybrać falownik, który ma zostać uruchomiony.
- Jeśli w aplikacji pojawi się komunikat Connect, falownik jest podłączony.

#### INFORMACJA

Jeśli w pobliżu falownika znajduje się wiele elementów metalowych, np. konstrukcje wsporcze, kable połączeniowe, obudowy, zasięg połączenia radiowego może być ograniczony. W przypadku problemów z połączeniem zmienić pozycję montażu.

#### INFORMACJA

Domyślnym hasłem jest: *12345678*. Należy je zmienić po pierwszym uruchomieniu.

W razie zapomnienia hasła do sieci WLAN można przywrócić hasło domyślne za pomocą przycisku Reset pod pokrywą COM2.

#### INFORMACJA

To pytanie nie pojawia się zawsze. Zależy to od systemu operacyjnego smartfona/tabletu.

### Przebieg pierwszego uruchomienia

- 1. W aplikacji otworzyć stronę Ustawienia.
- Na stronie Ustawienia w aplikacji znajdują się różne menu, gdzie można dokonać ustawień.
- Aby uzyskać dostęp do wszystkich istotnych ustawień, należy wybrać punkt menu Zarządzanie użytkownikami, a następnie Przełącz użytkownika.
- 3. Wpisać hasło *superadmin* i wybrać *Zalogowanie się jako administrator*.
- Wprowadzić ustawienia robocze falownika i na stronie Ustawienia wybrać punkt menu Ustawienia falownika.
- Wybrać i potwierdzić język.
  W tym celu wybrać odpowiedni język przyciskami strzałek. Potwierdzić przyciskiem *ENTER*.
- Falownik jest teraz gotowy do pracy i obsługi.
  Pierwsze uruchomienie jest zakończone.

Po pierwszym uruchomieniu trzeba jeszcze dokonać następujących ustawień:

- Ustawienia falownika przez instalatora
- Dokonać obowiązkowych ustawień dostarczania energii do sieci określonych przez zakład energetyczny (ZE)
- Zmienić hasło lub zaktualizować oprogramowanie falownika.

#### INFORMACJA

Przebieg instalacji może się różnić w zależności od wersji oprogramowania falownika.

Informacje o menu Rozdz. 5.5

#### INFORMACJA

Domyślnym hasłem dla administratora jest *admin*. Za pomocą tego hasła można dokonać różnych ustawień.

Hasło to powinno zostać zmienione po pierwszym uruchomieniu.

Aby wprowadzić ustawienia sieci i inne ważne ustawienia (np. ograniczenie mocy lub wytyczne dot. sieci), należy wprowadzić hasło *superadmin* podczas logowania jako administrator. Tego hasła nie można zmienić.

#### INFORMACJA

Przestrzegać przepisów krajowych! Zwłaszcza we Francji wymagane jest np. umieszczenie na falowniku etykiet o ustawieniach.

Instalator jest odpowiedzialny za zakup i naklejenie wymaganych oznaczeń.

# 4. Eksploatacja i obsługa

| 4.1 | Włącz falownik                          | 80 |
|-----|-----------------------------------------|----|
| 4.2 | Wyłączanie falownika                    | 81 |
| 4.3 | Odłączenie falownika od źródła napięcia | 82 |
| 4.4 | Stany operacyjne falownika              | 84 |
| 4.5 | Diody LED statusu                       | 85 |
| 4.6 | Wyświetlanie statusu w aplikacji        | 87 |

4.1 Włącz falownik

1. Włączyć napięcie sieciowe wyłącznikiem nadmiarowo-prądowym.

**2.** Ustawienie mocy czynnej odbiornika do zdalnego sterowania.

#### INFORMACJA

Gdy tylko jeden z dwóch wyłączników DC na PIKO 50/60 zostanie ustawiony w pozycji ON, falownik uruchamia się.

Wyłącznik DC SW1 przełącza wejścia DC2-8. **Rozdz. 8.2** 

Wyłącznik DC SW2 przełącza wejścia DC10-16. **Rozdz. 8.2** 

- → Falownik uruchomi się.
- Podczas uruchamiania na chwilę zaświecą się diody LED.
- Po uruchomieniu diody LED sygnalizują stan operacyjny falownika.
- Falownik rozpoczyna pracę.

#### INFORMACJA

Przy pierwszym uruchomieniu falownika przechodzi on w stan wyłączenia (*Shutdown*).

W tym przypadku należy najpierw przeprowadzić pierwsze uruchomienie.

## 4.2 Wyłączanie falownika

Aby wyłączyć falownik, należy wykonać poniższe czynności :

1. Wyłączyć wyłącznik nadmiarowo-prądowy.

#### INFORMACJA

W celu przeprowadzenia prac konserwacyjnych przy falowniku należy całkowicie wyłączyć urządzenie. **Rozdz. 4.3** 

2. Ustawić wyłącznik DC na falowniku w pozycji OFF.

✓ Falownik jest wyłączony.

Falownik znajduje się nadal pod napięciem i jest kontynuowane monitorowanie.

## 4.3 Odłączenie falownika od źródła napięcia

W przypadku prac konserwacyjnych przy falowniku, w szczególności przy złączach, konieczne jest odłączenie falownika od źródła napięcia.

- Do prac po stronie AC, np. w liczniku energii, instalacji uziemiającej lub złączach komunikacyjnych, wystarczy odłączyć przyłącze AC.
- Do prac przy panelach PV lub przewodach zasilających DC należy odłączyć przyłącza DC.
- Podczas prac w przestrzeni przyłączeniowej falownika musi on być odłączony całkowicie od źródła napięcia po stronie AC i DC.

### Odłączenie falownika po stronie AC

 Wyłączyć wyłącznik nadmiarowo-prądowy AC i zabezpieczyć go przed ponownym włączeniem.

 Wyłącznik DC na falowniku przełączyć do OFF i zabezpieczyć go przed ponownym włączeniem.

NIEBEZPIECZEŃSTWO

ZAGROŻENIE ŻYCIA POPRZEZ PORAŻENIE PRĄDEM ELEK-TRYCZNYM I WYŁADOWANIE ELEKTROSTATYCZNE!

Podczas pracy w przestrzeni przyłączeniowej, przy przewodach zasilających DC lub panelach PV, przewody DC muszą być jeszcze odłączone.

 Falownik jest odłączony od źródła napięcia po stronie AC

### Odłączenie przewodów DC

Falownik musi zostać najpierw odłączony od źródła napięcia po stronie AC. Następnie można odłączyć wszystkie przyłącza DC na falowniku. Jest do tego potrzebne znajdujące się w komplecie narzędzie do demontażu

 Włożyć narzędzie do demontażu w boczne otwory zwalniające wtyczkę. Wtyczka zostanie odblokowana i wysunie się ok. 1,5 mm z gniazda.

- 2. Wyciągnąć wtyczkę z gniazda.
- Upewnić się, że odłączone przewody DC są zabezpieczone zarówno przed warunkami atmosferycznymi (deszcz), jak i przed dostępem osób nieupoważnionych.
- **4.** Sprawdzić, czy wszystkie złącza w falowniku są odłączone od napięcia.
- Przed dalszymi pracami w falowniku należy odczekać co najmniej 10 minut, aby znajdujące się w niej kondensatory mogły się rozładować.
- Falownik jest odłączony po stronie DC i nie występuje w nim napięcie.

#### NIEBEZPIECZEŃSTWO

ZAGROŻENIE ŻYCIA POPRZEZ PORAŻENIE PRĄDEM ELEK-TRYCZNYM I WYŁADOWANIE ELEKTROSTATYCZNE!

Odłączyć wszystkie urządzenia od źródła napięcia i zabezpieczyć przed ponownym włączeniem.

Gdy tylko na generatory/przewody PV pada światło, mogą znajdować się pod napięciem.

Odłączyć przewody DC poprzez przerwanie połączeń z panelami PV.

Jeśli nie jest możliwe odłączenie przewodów DC, należy przestrzegać zasad pracy pod napięciem. Używać środków ochrony indywidualnej, kasku, przyłbicy lub okularów ochronnych, kombinezonu ochronnego, rękawic izolacyjnych. Jako podkład należy użyć izolacyjnej maty ochronnej.

Należy używać wyłącznie narzędzi izolowanych.

## 4.4 Stany operacyjne falownika

Po włączeniu falownik znajduje się zawsze w jednym z poniższych stanów operacyjnych:

| Stan operacyjny  | Opis                                                                                                                       |
|------------------|----------------------------------------------------------------------------------------------------------------------------|
| Tach ozuwania    | Podłączone panele PV nie wytwarzają wystar-<br>czającej ilości energii, aby dostarczać ją do<br>sieci elektrycznej.        |
| ITYD Czuwarila   | Gdy tylko spełnione zostaną wymagane<br>warunki, falownik przełączy się na tryb<br><b>Dostawa do sieci</b> .               |
| Dostawa do sieci | Falownik wytwarza energię elektryczną<br>i dostarcza ją do podłączonej sieci<br>elektrycznej.                              |
|                  | Falownik jest wyłączony z powodu polecenia wyłączenia lub błędu.                                                           |
| Wył. (Shutdown)  | Gdy tylko falownik otrzyma polecenie włącze-<br>nia lub błąd zostanie usunięty, przełączy się<br>na <b>Tryb czuwania</b> . |

## 4.5 Diody LED statusu

llustr. 31: Dioda statusu

Diody z przodu urządzenia sygnalizują aktualny stan roboczy.

Dalsze informacje o statusie można odczytać za pomocą aplikacji *KOSTAL PIKO CI* lub w *KOSTAL Solar Portal*.

Środki, które należy podjąć w przypadku wystąpienia zdarzeń, podano w rozdziale **Rozdz. 7.7**.

| Znaczenie |             | Stan                   | Opis                                                                                                                  |
|-----------|-------------|------------------------|-----------------------------------------------------------------------------------------------------------------------|
|           | Wejścia PV  | Świeci się             | Napięcie wejściowe mieści się w zakresie roboczym                                                                     |
|           |             | Miga                   | Za wysokie/za niskie napięcie                                                                                         |
|           | Dostawa     | Wył.                   | Falownik nie dostarcza energii do sieci                                                                               |
|           |             | Świeci się             | Falownik dostarcza energię do sieci.<br>Co 30 sekund falownik zgłasza swoją aktualną moc:                             |
|           |             |                        | Mignięcie 1×: < 20 %<br>Mignięcie 2×: < 40 %<br>Mignięcie 3×: < 60 %<br>Mignięcie 4×: < 80 %<br>Mignięcie 5×: < 100 % |
|           |             | Ciągłe miganie         | Stan sieci energetycznej nie pozwala na dostarczanie energii.                                                         |
|           | Komunikacja | Wył.                   | Brak aktywnego połączenia lub brak komunikacji                                                                        |
|           |             | Miga                   | Falownik komunikuje się z innym urządzeniem                                                                           |
|           | Usterka     | Wył.                   | Brak usterki                                                                                                          |
|           |             | Świeci się lub<br>miga | Wystąpiła usterka                                                                                                     |

## 4.6 Wyświetlanie statusu w aplikacji

Aplikacja na smartfon **KOSTAL PIKO CI wyświetla** aktualny stan operacyjny, moc wyjściową i aktualne wartości pomiarowe falownika.

#### **INFORMACJA**

Interfejs użytkownika w aplikacji KOSTAL PIKO CI zależy od zainstalowanego oprogramowania sprzętowego (FW) oraz używanej wersji aplikacji i może się różnić od opisu.

llustr. 32: Obszar aplikacji Strona główna > Stan operacyjny

- Aktualny stan operacyjny
- 2 Status połączenia z routerem
- Wytwarzana energia
- Aktualne wartości pomiarowe
- 5 Wybór strony startowej
- 6 Wybór strony Ustawienia

Więcej informacji na temat KOSTAL PIKO CI

Rozdz. 5.1.

# 5. Aplikacja KOSTAL PIKO CI

| 5.1 | Aplikacja KOSTAL PIKO CI                        | 89 |
|-----|-------------------------------------------------|----|
| 5.2 | Instalacja aplikacji KOSTAL PIKO CI             | 90 |
| 53  | Połaczenie falownika z anlikacja KOSTAL PIKO CI | 01 |
| 0.0 |                                                 | 91 |
| 5.4 | Logowanie jako administrator                    | 92 |
| 5.5 | Aplikacja KOSTAL PIKO CI – Struktura menu       | 93 |
| 5.6 | Aplikacja KOSTAL PIKO CI – Opis menu            | 97 |

## 5.1 Aplikacja KOSTAL PIKO CI

Darmowa aplikacja *KOSTAL PIKO CI* posiada graficzny interfejs użytkownika.

Aplikacja ta służy do uruchamiania i konfigurowania falownika oraz do wyświetlania jego statusu:

- Logowanie w falowniku
- Aktualizacja oprogramowania sprzętowego falownika
- Logowanie jako użytkownik lub administrator
- Kontrola statusu
- Aktualne wartości energii oddawanej na przyłączu sieciowym
- Wyświetlanie danych dziennika
- Wyświetlanie wersji falownika
- Konfiguracja falownika (np. połączenie LAN, konfiguracja licznika energii itp.)

## 5.2 Instalacja aplikacji KOSTAL PIKO CI

Pobrać aplikację **KOSTAL PIKO CI** z Apple App Store lub Google Play Store na tablet lub smartfon i zainstalować ją.

## 5.3 Połączenie falownika z aplikacją KOSTAL PIKO CI

Aplikację **KOSTAL PIKO CI** uruchamia się za pomocą smartfona lub tabletu. W tym celu smartfon lub tablet musi znajdować się w zasięgu bezprzewodowej sieci WiFi falownika.

- Włączyć funkcję WiFi/WLAN na tablecie lub smartfonie
- 2. Otworzyć ustawienia WiFi/WLAN.
- 3. Włączyć falownik.
- Zanotować typ i numer seryjny uruchamianego falownika. Dane te znajdują się na tabliczce znamionowej.
- Wyszukać sieć WLAN falownika na tablecie lub smartfonie i wybrać ją.
   SSID falownika składa się z typu i numeru seryjnego falownika.
   Przykład: PIKO\_CI\_50\_12345678
- 6. Wpisać jako hasło: 12345678 i potwierdzić.
- 7. Na pytanie *Check* odpowiedzieć *Stay*.
- 8. Uruchomić aplikację.
- Aplikacja wyświetla falownik podłączony do sieci WLAN tabletu lub smartfona.
- **9.** Wybrać falownik, z którym ma zostać nawiązane połączenie.
- Jeśli w aplikacji pojawi się komunikat *Connect*, falownik jest podłączony.

#### INFORMACJA

Jeśli w pobliżu falownika znajduje się wiele elementów metalowych, np. konstrukcje wsporcze, kable połączeniowe, obudowy, zasięg połączenia radiowego może być ograniczony. W przypadku problemów z połączeniem zmienić pozycję montażu.

#### INFORMACJA

Domyślnym hasłem jest: 12345678. Należy je zmienić po pierwszym uruchomieniu.

#### INFORMACJA

To pytanie nie pojawia się zawsze. Zależy to od systemu operacyjnego smartfona/tabletu.

## 5.4 Logowanie jako administrator

Po połączeniu aplikacji **KOSTAL PIKO CI** z falownikiem, można zobaczyć wszystkie wartości. Jednak niektóre ustawienia mogą być zmieniane wyłączenie przez administratora. W tym celu należy zmienić użytkownika.

Aby to zrobić, należy wykonać następujące kroki:

- 1. W aplikacji otworzyć stronę Ustawienia.
- Na stronie Ustawienia w aplikacji znajdują się różne menu, gdzie można dokonać ustawień.
- Aby uzyskać dostęp do wszystkich istotnych ustawień, należy wybrać punkt menu Zarządzanie użytkownikami, a następnie przycisk Przełącz użytkownika.
- 3. Wpisać hasło *superadmin* i wybrać *Zalogowanie się jako administrator*.
- Teraz użytkownik jest zalogowany jako administrator.

### Wprowadzanie ustawień

Dokonać wymaganych ustawień w falowniku.

#### **INFORMACJA**

Domyślnym hasłem dla administratora jest *admin*. Za pomocą tego hasła można dokonać różnych ustawień.

Hasło to powinno zostać zmienione po pierwszym uruchomieniu.

Aby wprowadzić ustawienia sieci i inne ważne ustawienia (np. ograniczenie mocy lub wytyczne dot. sieci), należy wprowadzić hasło *superadmin* podczas logowania jako administrator. Tego hasła nie można zmienić.

## 5.5 Aplikacja KOSTAL PIKO CI – Struktura menu

Możliwe są różnice w zależności od wersji oprogramowania.

### Komunikaty o zdarzeniach

L Informacja – komunikaty o zdarzeniach

### Produkcja energii

L Energia dzień/miesiąc/rok

### Ustawienia podstawowe

|   | Podstawowe informacje                   |
|---|-----------------------------------------|
| H | Тур                                     |
| H | Numer seryjny                           |
| H | Wersja oprogramowania sprzętowego       |
| H | Kod wewnętrzny                          |
| H | Wersja Modbus                           |
| H | Wersja płyty komunikacyjnej             |
| H | Aktualizuj oprogramowanie sprzętowe CB  |
| H | Aktualizuj oprogramowanie sprzętowe CSE |
|   | Obsługa                                 |
| H | Włącz falownik                          |
| H | Wyłącz falownik                         |
| H | Przywróć ustawienia fabryczne           |
|   | Zarządzanie danymi                      |
| H | Aktywuj wyłączenie zewnętrzne           |
| H | Eksportuj komunikaty o zdarzeniach      |
| H | Eksportuj dane produkcji energii        |
| H | Eksportuj dane konfiguracji             |
| H | Importuj dane konfiguracji              |
|   | 0                                       |
| L | Wersja aplikacji                        |

### Zarządzanie użytkownikami

- Przełącz użytkownika
  - Zmień hasło logowania administratora

## Ustawienia komunikacji

| Ustawienia WLAN         |                                 |
|-------------------------|---------------------------------|
|                         | – Wybierz połączenie WLAN       |
|                         | Zmień hasło lokalnej sieci WLAN |
|                         |                                 |
| – Ustawienia sieci LAN  | Tryb IP                         |
|                         | – Adres IP                      |
|                         | – Maska podsieci                |
|                         | – Router/bramka                 |
|                         | – Auto DNS                      |
|                         | – Serwer DNS 1                  |
|                         | Serwer DNS 2                    |
|                         |                                 |
| Ustawienia RS485        | Prędkość transmisji             |
|                         | – Bit danych                    |
|                         | – Bit stopu                     |
|                         | – Bit parzystości               |
|                         | – Terminator                    |
|                         | L Adres Modbus                  |
|                         |                                 |
| Ustawienia Master/Slave |                                 |

### Ustawienia falownika





- Nieregularna zmiana napięcia (%)

## 5.6 Aplikacja KOSTAL PIKO CI – Opis menu

Aplikacja KOSTAL PIKO CI zawiera następujące menu.

| Parametr              | Objaśnienie                                                                                                                                                                                                                                               |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| START                 | Podłączyć smartfon/tablet do sieci WLAN falownika.                                                                                                                                                                                                        |
| DOWNLOAD UPDATE FILES | Pobrać pliki aktualizacji z serwera. Są one zapisywane na smartfonie/tablecie w fol-<br>derze <b>KOSTAL PIKO CI</b> . Smartfon/tablet nie może być podłączony do sieci WLAN<br>falownika, ponieważ w przeciwnym razie nie będzie połączenia z Internetem. |

### Strona główna

Na stronie głównej użytkownik widzi status falownika. Są to:

- Status falownika
- Stan połączenia WLAN pomiędzy routerem a falownikiem
- Komunikaty o zdarzeniach
- Wykres mocy
- Aktualne wartości pomiarowe

| Parametr                                    | Objaśnienie                                                                     |
|---------------------------------------------|---------------------------------------------------------------------------------|
| Status ograniczenia mocy                    | Status / aktualne ograniczenie mocy                                             |
| Status odbiornika do zdalnego<br>sterowania | Status / aktualne ustawienie odbiornika do zdalnego sterowania (RCD)            |
| Status zewnętrznego wyłączenia              | Status centralnej ochrony sieci i instalacji (NAS)                              |
| Status redukcji mocy                        | Status / aktualna redukcja mocy                                                 |
| Aktualna moc                                | Zmierzona wartość aktualnie wytwarzanej mocy elektrycznej w kilowatach (kW)     |
| Uzysk dzisiaj                               | Zmierzona wartość energii wytworzonej w bieżącym dniu w kilowatogodzinach (kWh) |
| Uzysk łącznie                               | Zmierzona wartość energii wytworzonej do bieżącej daty                          |
| Maksymalna moc                              | Zmierzona wartość najwyższej wytworzonej mocy do bieżącej daty (kW)             |
| Temperatura                                 | Aktualna temperatura otoczenia falownika                                        |
| MPPTx napięcie                              | Zmierzona wartość bieżącego napięcia wejściowego grup PV 1 do 4                 |
| MPPTx prąd                                  | Zmierzona wartość bieżącego prądu wejściowego grup PV 1 do 4                    |
| Napięcie wyjściowe Lx-Ly                    | Napięcie faz L1-L3                                                              |
| Natężenie wyjściowe Lx                      | Prąd faz L1-L3                                                                  |
| Współczynnik mocy                           | Współczynnik mocy(cosφ) aktualnie dostarczanej mocy elektrycznej                |
| Częstotliwość sieci                         | Częstotliwość wyjściowa wytwarzanego aktualnie prądu przemiennego               |
| Moc czynna                                  | Zmierzona wartość wytwarzanej aktualnie mocy czynnej                            |
| Moc bierna                                  | Zmierzona wartość wytwarzanej aktualnie mocy biernej                            |

### Ustawienia

W tym punkcie menu można sprawdzić dane falownika i skonfigurować falownik. Należą do nich:

- Komunikaty falownika/zdarzenia
- Dane dotyczące produkcji
- Podstawowe informacje/ustawienia (np. informacje o urządzeniu, przywrócenie ustawień fabrycznych falownika, eksport danych dziennika)
- Zarządzanie dostępem (zarządzanie użytkownikami, zmiana hasła)
- Ustawienia komunikacji (np. ustawienia Ethernet (LAN)/WLAN/WiFi/RS485)
- Ustawienia falownika (np. godzina/data, wytyczne dot. sieci itp.)

## Komunikaty o zdarzeniach

| Parametr                                 | Objaśnienie                                                                                                                  |
|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| Informacja – komunikaty<br>o zdarzeniach | Wyświetlanie zdarzeń w falowniku. Dalsze informacje na temat zdarzeń i możliwych sposobów usunięcia błędu <b>Rozdz. 7.7.</b> |

## Produkcja energii

| Parametr                  | Objaśnienie                                                          |
|---------------------------|----------------------------------------------------------------------|
| Energia dzień/miesiąc/rok | Wyświetlanie energii wytworzonej na wykresie dla dnia/miesiąca/roku. |

## Ustawienia podstawowe

| Podstawowe informacje                        | Objaśnienie                                                                                                                                                                                                 |
|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Тур                                          | Model falownika.                                                                                                                                                                                            |
| Numer seryjny                                | Numer seryjny falownika.                                                                                                                                                                                    |
| Wersja oprogramowania<br>sprzętowego         | Wersja oprogramowania sprzętowego bezpieczeństwa falownika. Zawiera funkcje<br>bezpieczeństwa, włączania i wyłączania niezbędne dla bezpieczeństwa urządzeń<br>i funkcji serwisowych sieci.                 |
| Kod wewnętrzny                               | Wersja oprogramowania sprzętowego płyty sterownika (CB).                                                                                                                                                    |
| Wersja Modbus                                | Wersja Modbus zastosowana w falowniku.                                                                                                                                                                      |
| Wersja płyty komunikacyjnej                  | Wersja oprogramowania sprzętowego karty komunikacyjnej.                                                                                                                                                     |
| Aktualizuj oprogramowanie sprzę-<br>towe CB  | Aktualizacja oprogramowania sprzętowego płyty sterownika (CB). Oprogramowanie sprzętowe należy pobrać wcześniej, naciskając przycisk <b>Download Updates Files</b> na ekranie startowym.                    |
| Aktualizuj oprogramowanie sprzę-<br>towe CSB | Zaktualizować oprogramowanie sprzętowe płyty komunikacyjnej (CSB). Oprogramo-<br>wanie sprzętowe należy pobrać wcześniej, naciskając przycisk <b>Download Updates</b><br><i>Files</i> na ekranie startowym. |
| Obsługa                                      | Objaśnienie                                                                                                                                                                                                 |
| Włącz falownik                               | Włączenie falownika.                                                                                                                                                                                        |
| Wyłącz falownik                              | Wyłączenie falownika.                                                                                                                                                                                       |
| Przywróć ustawienia fabryczne                | Przywrócenie parametrów falownika do ustawień fabrycznych.                                                                                                                                                  |
| Aktywuj wyłączenie zewnętrzne                | Aktywacja monitorowania centralnej ochrony sieci i instalacji w falowniku. Dalsze informacje <b>Rozdz. 5.1</b> .                                                                                            |
| Zarządzanie danymi                           | Objaśnienie                                                                                                                                                                                                 |
| Eksportuj komunikaty o zdarzeniach           | Eksport danych dziennika (komunikaty o zdarzeniach/dane produkcji energii/dane                                                                                                                              |
| Eksportuj dane produkcji energii             | konfiguracji falownika) Rozdz. 6.2. Są one zapisywane w katalogu głównym na                                                                                                                                 |
| Eksportuj dane konfiguracji                  | smartfonie.                                                                                                                                                                                                 |
| Importuj dane konfiguracji                   | Import danych konfiguracji falownika.                                                                                                                                                                       |

| 0                | Objaśnienie                      |
|------------------|----------------------------------|
| Wersja aplikacji | Wersja aplikacji KOSTAL PIKO CI. |

## Zarządzanie użytkownikami

| Parametr                                | Objaśnienie                                                                                                                                                                                                             |
|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Przełącz użytkownika                    | Przełączenie użytkownika (administrator lub gość).                                                                                                                                                                      |
|                                         | Zmiana hasła administratora. Domyślnie hasło to admin.                                                                                                                                                                  |
| Zmień hasło logowania<br>administratora | Rozszerzone hasło administratora <b>superadmin</b> , które jest wymagane do konfiguracji falownika lub do zmiany ustawień parametrów sieci (np. ograniczeń mocy lub wytycz-nych dot. sieci), nie może zostać zmienione. |

## Ustawienia komunikacji

| Ustawienia WLAN                 | Objaśnienie                                                                                                                                                                                    |
|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| WLAN IP                         | Adres IP WLAN modułu WiFi falownika.                                                                                                                                                           |
| Wybierz połączenie WLAN         | Wybór routera WLAN z hasłem (połączenie falownika z routerem WLAN).                                                                                                                            |
| Zmień hasło lokalnej sieci WLAN | Zmiana hasła WLAN falownika.<br>Domyślnie jest to <b>12345678</b>                                                                                                                              |
| Ustawienia sieci LAN            | Objaśnienie                                                                                                                                                                                    |
| Tryb IP                         | Standardowo jest aktywna opcja "Pobierz automatycznie adres IP". Oznacza to, że falownik uzyskuje adres IP z serwera DHCP.                                                                     |
|                                 | Wprowadzenie adresu IP falownika.                                                                                                                                                              |
| Adres IP                        | Jeśli falownik nie uzyska automatycznie adresu IP z serwera DHCP, falownik można skonfigurować ręcznie.                                                                                        |
|                                 | Dane niezbędne do konfiguracji, takie jak adresy IP, maska podsieci, adres routera i DNS, można znaleźć w routerze/bramce.                                                                     |
| Maska podsieci                  | Wprowadzenie maski podsieci, np. 255.255.255.0                                                                                                                                                 |
| Router/bramka                   | Wprowadzenie adresu IP routera/bramki                                                                                                                                                          |
| Auto DNS                        | Opcja "Auto DNS" jest domyślnie włączona. Oznacza to, że falowniki mogą być adre-<br>sowane również za pomocą nazwy zamiast adresu IP. W tym celu należy wprowadzić<br>adresy IP serwerów DNS. |
| Serwer DNS 1                    | Wprowadzenie adresu IP serwera DNS (Domain Name System)                                                                                                                                        |
| Serwer DNS 2                    | Wprowadzenie adresu IP rezerwowego serwera DNS (Domain Name System)                                                                                                                            |
| Ustawienia RS485                | Objaśnienie                                                                                                                                                                                    |
| Prędkość transmisji             | Szybkość transmisji RS485                                                                                                                                                                      |
| Bit danych                      | RS485 bit danych                                                                                                                                                                               |
| Bit stopu                       | RS485 bit stopu                                                                                                                                                                                |
| Bit parzystości                 | RS485 bit parzystości                                                                                                                                                                          |

| Ustawienia RS485        | Objaśnienie                                                                                                              |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------|
| Terminator              | Aktywować terminator dla magistrali RS485. Musi on być aktywowany na ostatnim falowniku podłączonym do magistrali RS485. |
| Adres Modbus            | Adres Modbus                                                                                                             |
|                         |                                                                                                                          |
| Ustawienia Master/Slave | Objaśnienie                                                                                                              |

### Ustawienia falownika

| Ustawienie czasu               | Objaśnienie                                         |
|--------------------------------|-----------------------------------------------------|
| Synchronizacja czasu falownika | Zsynchronizować czas falownika z godziną smartfona. |

Za pomocą poniższych punktów menu można ustawić w falowniku parametry określone przez operatora sieci. Parametry falownika może zmieniać wyłącznie wykwalifikowany elektryk znający instalację na zlecenie operatora sieci. Niewłaściwe ustawienia mogą spowodować zagrożenia dla zdrowia i życia użytkownika i osób trzecich. Ponadto może dojść do uszkodzenia urządzenia i innych szkód materialnych.

| Ustawienia sieci                                           | Objaśnienie                                                   |
|------------------------------------------------------------|---------------------------------------------------------------|
| Monitorowanie częstotliwości<br>poziomu 1 aktywne          | Aktywacja/dezaktywacja monitorowania częstotliwości poziom 1  |
| Wytyczne dot. sieci                                        | Wybór wytycznych dot. sieci (np. VDE-AR-N 4105)               |
| Czas podłączenia (s)                                       | Czas oczekiwania na podłączenie po włączeniu falownika        |
| Czas podłączenia po błędzie sieci<br>(s)                   | Czas podłączenia po błędzie sieci falownika                   |
| Gradient mocy (%/min)                                      | Gradient mocy po włączeniu falownika                          |
| Gradient mocy po błędzie sieci<br>(%/min)                  | Gradient mocy po błędzie sieci falownika                      |
| Górna wartość graniczna częstotli-<br>wości x (Hz)         | Ustawienie progu górnej wartości granicznej częstotliwości    |
| Dolna wartość graniczna częstotli-<br>wości x (Hz)         | Ustawienie progu dolnej wartości granicznej częstotliwości    |
| Górna wartość graniczna napięcia<br>x (V)                  | Ustawienie górnej wartości granicznej napięcia w celu ochrony |
| Dolna wartość graniczna napięcia<br>x (V)                  | Ustawienie dolnej wartości granicznej napięcia w celu ochrony |
| Czas wyłączenia przy zbyt wysokiej<br>częstotliwości x (s) | Ustawienie czasu wyłączenia przy zbyt wysokiej częstotliwości |

| Us                                          | tawienia sieci                                                                                                                                                                                                                        | Objaśnienie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cza<br>czę                                  | as wyłączenia przy zbyt niskiej<br>ostotliwości x (s)                                                                                                                                                                                 | Ustawianie czasu wyłączenia przy zbyt niskiej częstotliwości                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Cza<br>nap                                  | as wyłączenia przy zbyt wysokim<br>pięciu x (s)                                                                                                                                                                                       | Ustawienie czasu wyłączenia przy zbyt wysokim napięciu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Cza<br>nap                                  | as wyłączenia przy zbyt niskim<br>pięciu x (s)                                                                                                                                                                                        | Ustawienie czasu wyłączenia przy zbyt niskim napięciu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Naj                                         | pięcie początkowe sieci maks. (V)                                                                                                                                                                                                     | Jeśli po wyłączeniu falownika w celu ochrony z powodu błędu napięcie sieci jest<br>wyższe niż górna wartość graniczna napięcia ponownego podłączenia, nie wolno<br>ponownie podłączać falownika do sieci.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Naj                                         | pięcie początkowe sieci min. (V)                                                                                                                                                                                                      | Jeżeli po wyłączeniu falownika w celu ochrony z powodu błędu napięcie sieciowe jest niższe niż dolna wartość graniczna napięcia ponownego podłączenia, nie wolno ponownie podłączać falownika do sieci.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Czę<br>ma                                   | ęstotliwość początkowa sieci<br>ks. (Hz)                                                                                                                                                                                              | Jeśli po wyłączeniu falownika w celu ochrony z powodu błędu częstotliwość sieci jest wyższa niż górna wartość graniczna częstotliwości ponownego podłączenia, nie wolno ponownie podłączać falownika do sieci.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Częstotliwość początkowa sieci<br>min. (Hz) |                                                                                                                                                                                                                                       | Jeśli po wyłączeniu falownika w celu ochrony z powodu błędu częstotliwość sieci jest<br>niższa niż dolna wartość graniczna częstotliwości ponownego podłączenia, nie wolno<br>ponownie podłączać falownika do sieci.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Wartość średnia                             |                                                                                                                                                                                                                                       | l Istawienie wartości średniej za wysokiego napiecia z 10 minut                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| vva                                         | nuose sreama                                                                                                                                                                                                                          | Ustawich ice wartoson shouring za wysoniogo hapiçola z no minut                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Do                                          | pasowanie/<br>julacja mocy                                                                                                                                                                                                            | <b>Objaśnienie</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Do<br>reg<br>Reg                            | pasowanie/<br>julacja mocy<br>gulacja mocy czynnej                                                                                                                                                                                    | Objaśnienie<br>Sterowanie mocą czynną                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Do<br>reç<br>Reç                            | pasowanie/<br>gulacja mocy<br>gulacja mocy czynnej<br>Regulacja P(U)                                                                                                                                                                  | Objaśnienie      Sterowanie mocą czynną      Parametr krzywej P(U), która zmniejsza moc czynną, jeśli napięcie wyjściowe przekro-<br>czy określoną wartość.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Do<br>reg<br>Reg                            | pasowanie/<br>gulacja mocy<br>gulacja mocy czynnej<br>Regulacja P(U)<br>Regulacja P(F)                                                                                                                                                | Objaśnienie      Sterowanie mocą czynną      Parametr krzywej P(U), która zmniejsza moc czynną, jeśli napięcie wyjściowe przekro-<br>czy określoną wartość.      Parametr krzywej P(f), która zmniejsza moc czynną przy nadmiernej częstotliwości lub<br>zwiększa moc czynną przy zbyt niskiej częstotliwości.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Do<br>reg<br>Reg                            | pasowanie/<br>gulacja mocy<br>gulacja mocy czynnej<br>Regulacja P(U)<br>Regulacja P(F)<br>Gradient mocy (%/s)                                                                                                                         | Objaśnienie      Sterowanie mocą czynną      Parametr krzywej P(U), która zmniejsza moc czynną, jeśli napięcie wyjściowe przekro-<br>czy określoną wartość.      Parametr krzywej P(f), która zmniejsza moc czynną przy nadmiernej częstotliwości lub<br>zwiększa moc czynną przy zbyt niskiej częstotliwości.      Ustawić gradient mocy. Gradient mocy wskazuje, jak szybko moc ma być zwięk-<br>szana lub zmniejszana.                                                                                                                                                                                                                                                                                                                                                                                             |
|                                             | pasowanie/<br>gulacja mocy<br>gulacja mocy czynnej<br>Regulacja P(U)<br>Regulacja P(F)<br>Gradient mocy (%/s)<br>Maksymalna moc dostarczana<br>(W)                                                                                    | Objaśnienie      Sterowanie mocą czynną      Parametr krzywej P(U), która zmniejsza moc czynną, jeśli napięcie wyjściowe przekro-<br>czy określoną wartość.      Parametr krzywej P(f), która zmniejsza moc czynną przy nadmiernej częstotliwości lub<br>zwiększa moc czynną przy zbyt niskiej częstotliwości.      Ustawić gradient mocy. Gradient mocy wskazuje, jak szybko moc ma być zwięk-<br>szana lub zmniejszana.      Ustawienie maksymalnej mocy czynnej falownika                                                                                                                                                                                                                                                                                                                                          |
| Do<br>reg<br>Res                            | pasowanie/<br>gulacja mocy<br>gulacja mocy czynnej<br>Regulacja P(U)<br>Regulacja P(F)<br>Gradient mocy (%/s)<br>Maksymalna moc dostarczana<br>(W)<br>Maksymalna moc czynna                                                           | Objaśnienie      Sterowanie mocą czynną      Parametr krzywej P(U), która zmniejsza moc czynną, jeśli napięcie wyjściowe przekro-<br>czy określoną wartość.      Parametr krzywej P(f), która zmniejsza moc czynną przy nadmiernej częstotliwości lub<br>zwiększa moc czynną przy zbyt niskiej częstotliwości.      Ustawić gradient mocy. Gradient mocy wskazuje, jak szybko moc ma być zwięk-<br>szana lub zmniejszana.      Ustawienie maksymalnej mocy czynnej falownika      Wprowadzić ustawienia regulacji mocy czynnej określone przez zakład energetyczny<br>(ZE).                                                                                                                                                                                                                                           |
| Reg<br>Reg                                  | pasowanie/<br>gulacja mocy<br>gulacja mocy czynnej<br>Regulacja P(U)<br>Regulacja P(F)<br>Gradient mocy (%/s)<br>Maksymalna moc dostarczana<br>(W)<br>Maksymalna moc czynna                                                           | Objaśnienie      Sterowanie mocą czynną      Parametr krzywej P(U), która zmniejsza moc czynną, jeśli napięcie wyjściowe przekro-<br>czy określoną wartość.      Parametr krzywej P(f), która zmniejsza moc czynną przy nadmiernej częstotliwości lub<br>zwiększa moc czynną przy zbyt niskiej częstotliwości.      Ustawić gradient mocy. Gradient mocy wskazuje, jak szybko moc ma być zwięk-<br>szana lub zmniejszana.      Ustawienie maksymalnej mocy czynnej falownika      Wprowadzić ustawienia regulacji mocy czynnej określone przez zakład energetyczny<br>(ZE).      Sterowanie mocą bierną                                                                                                                                                                                                               |
| Res                                         | pasowanie/<br>gulacja mocy<br>gulacja mocy czynnej<br>Regulacja P(U)<br>Regulacja P(F)<br>Gradient mocy (%/s)<br>Maksymalna moc dostarczana<br>(W)<br>Maksymalna moc czynna<br>gulacja mocy biernej<br>Czas stabilizacji mocy biernej | Objaśnienie      Sterowanie mocą czynną      Parametr krzywej P(U), która zmniejsza moc czynną, jeśli napięcie wyjściowe przekro-<br>czy określoną wartość.      Parametr krzywej P(f), która zmniejsza moc czynną przy nadmiernej częstotliwości lub<br>zwiększa moc czynną przy zbyt niskiej częstotliwości.      Ustawić gradient mocy. Gradient mocy wskazuje, jak szybko moc ma być zwięk-<br>szana lub zmniejszana.      Ustawienie maksymalnej mocy czynnej falownika      Wprowadzić ustawienia regulacji mocy czynnej określone przez zakład energetyczny<br>(ZE).      Sterowanie mocą bierną      Określa czas stabilizacji mocy biernej (3 Tao, zachowanie PT-1)                                                                                                                                          |
| Res                                         | pasowanie/<br>pulacja mocy<br>gulacja mocy czynnej<br>Regulacja P(U)<br>Regulacja P(F)<br>Gradient mocy (%/s)<br>Maksymalna moc dostarczana<br>(W)<br>Maksymalna moc czynna<br>gulacja mocy biernej<br>Czas stabilizacji mocy biernej | Objaśnienie      Sterowanie mocą czynną      Parametr krzywej P(U), która zmniejsza moc czynną, jeśli napięcie wyjściowe przekro-<br>czy określoną wartość.      Parametr krzywej P(f), która zmniejsza moc czynną przy nadmiernej częstotliwości lub<br>zwiększa moc czynną przy zbyt niskiej częstotliwości.      Ustawić gradient mocy. Gradient mocy wskazuje, jak szybko moc ma być zwięk-<br>szana lub zmniejszana.      Ustawienie maksymalnej mocy czynnej falownika      Wprowadzić ustawienia regulacji mocy czynnej określone przez zakład energetyczny<br>(ZE).      Sterowanie mocą bierną      Określa czas stabilizacji mocy biernej (3 Tao, zachowanie PT-1)      Określa tryb regulacji mocy biernej.      Wprowadzić ustawienia regulacji mocy biernej określone przez zakład energetyczny<br>(ZE). |

#### Dopasowanie/ regulacia mocy

| 16                                 | gulacja mocy                                      |                                                                                                                                                                                                                                                   |
|------------------------------------|---------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                    | Funkcja ograniczenia mocy                         | Wyłączone: Do falownika nie jest podłączony żaden licznik energii.                                                                                                                                                                                |
|                                    |                                                   | KSEM: Do falownika jest podłączony licznik KOSTAL Smart Energy Meter.                                                                                                                                                                             |
|                                    | Pozycja czujnika                                  | Pozycja montażu licznika energii (punkt podłączenia do sieci lub odbiornik)<br>Rozdz. 3.11                                                                                                                                                        |
|                                    | Adres Modbus licznika energii                     | Adres Modbus licznika energii                                                                                                                                                                                                                     |
|                                    | Ograniczenie mocy czynnej do<br>(W)               | Konfiguracja ograniczenia mocy                                                                                                                                                                                                                    |
|                                    | Adres IP licznika energii                         | Adres IP licznika energii                                                                                                                                                                                                                         |
|                                    | L1-3 moc sieci                                    | Moc sieci na poszczególnych fazach                                                                                                                                                                                                                |
|                                    | Energia całkowita                                 | Pobór energii z sieci elektroenergetycznej                                                                                                                                                                                                        |
|                                    | Całkowita energia dostarczona                     | Dostarczanie energii do sieci elektroenergetycznej                                                                                                                                                                                                |
|                                    | L1-3 moc odbiornika                               | Moc odbiornika na poszczególnych fazach                                                                                                                                                                                                           |
|                                    | Zużycie ogółem                                    | Zużycie całkowite energii                                                                                                                                                                                                                         |
|                                    | L1-3 moc falownika                                | Moc falownika na poszczególnych fazach                                                                                                                                                                                                            |
|                                    | Całkowita moc falownika                           | Całkowita energia wytworzona przez falownik                                                                                                                                                                                                       |
| 0                                  | dbiornik do zdalnego sterowania                   | Odbiornik do zdalnego sterowania                                                                                                                                                                                                                  |
|                                    | Aktywuj odbiornik do zdalnego<br>sterowania       | Włączenie/wyłączenie funkcji odbiornika do zdalnego sterowania Rozdz. 3.13                                                                                                                                                                        |
|                                    | RCR moc czynna (%)                                | Ustawienie mocy czynnej odbiornika do zdalnego sterowania                                                                                                                                                                                         |
|                                    | Odbiornik do zdalnego sterowa-<br>nia, moc bierna | Ustawienie wartości mocy biernej odbiornika lub współczynnika mocy cos phi odbior-<br>nika do zdalnego sterowania                                                                                                                                 |
| Dalsze ustawienia                  |                                                   | Objaśnienie                                                                                                                                                                                                                                       |
| W                                  | lykrywanie izolacji                               | Włączanie/wyłączanie wykrywania izolacji                                                                                                                                                                                                          |
| Kontrola izolacji                  |                                                   | Włączanie/wyłączanie monitorowania izolacji.                                                                                                                                                                                                      |
|                                    |                                                   | Po włączeniu falownik wykrywa rezystancję izolacji przed podłączeniem do sieci.                                                                                                                                                                   |
|                                    |                                                   | Włączenie/wyłączenie monitorowania prądu różnicowego.                                                                                                                                                                                             |
| Μ                                  | onitorowanie prądu różnicowego                    | Gdy funkcja jest aktywna, falownik wykrywa prąd różnicowy tablicy.                                                                                                                                                                                |
|                                    |                                                   | Zarządzanie zacienieniem                                                                                                                                                                                                                          |
| Zarządzanie zacienieniem           |                                                   | W przypadku częściowego zacienienia stringów fotowoltaicznych nie będą one osią-<br>gać optymalnej mocy. Po aktywowaniu zarządzania zacienieniem falownik dostosuje<br>tracker MPP w taki sposób, aby mógł on pracować z maksymalną możliwą mocą. |
| Czasy zarządzania zacienieniem (s) |                                                   | Ustawianie czasu między kolejnymi odczytami trackera MPP                                                                                                                                                                                          |
| Re                                 | ezystancja izolacji (kΩ)                          | Jeśli ustalona wartość rezystancji izolacji jest mniejsza od wartości zadanej, falownik nie zostanie podłączony do sieci                                                                                                                          |
| W<br>(n                            | ′artość graniczna prądu upływu<br>ηΑ)             | Wartość graniczna do wykrywania prądu upływowego. Jeśli ustalona wartość jest wyższa od wartości zadanej, falownik zostanie wyłączony.                                                                                                            |
| W<br>na                            | ′artość graniczna asymetrii<br>apięcia (%)        | Ustawienie progu asymetrii napięcia sieciowego                                                                                                                                                                                                    |

Objaśnienie

| D  | alsze ustawienia                               | Objaśnienie                                                                                    |
|----|------------------------------------------------|------------------------------------------------------------------------------------------------|
| Dy | namiczne wsparcie sieci (FRT)                  | Dynamiczne wsparcie sieci (FRT = Fault Ride Through)                                           |
|    | Współczynnik K układ zgodny                    |                                                                                                |
|    | Współczynnik K układ przeciwny                 |                                                                                                |
|    | Monitorowanie napięcia zasilania               | Ustawienia dotyczące utrzymania działania w przypadku błędów sieci<br>FRT (Fault Ride Through) |
|    | Przepływ prądu niskiego napię-<br>cia (V) LVRT |                                                                                                |
|    | Przepływ prądu wysokiego<br>napięcia (V) HVRT  |                                                                                                |
|    | Tryb podtrzymania sieci                        |                                                                                                |
|    | Ograniczone wsparcie sieci (%)                 |                                                                                                |
|    | Nieregularna zmiana napięcia<br>(%)            |                                                                                                |

# 6. Monitorowanie instalacji

| 6.1 | Dane dziennika          |     |
|-----|-------------------------|-----|
|     |                         |     |
| 60  | Odazut danyah dziennika | 107 |
| 0.2 |                         |     |
|     |                         |     |
| 6.3 | KOSTAL Solar Portal     |     |

## 6.1 Dane dziennika

Falownik jest wyposażony w rejestrator danych, który regularnie rejestruje parametry instalacji. Dane dziennika można wykorzystywać do następujących celów:

- Kontrola działania instalacji
- Wykrywanie i analizowanie awarii
- Pobieranie danych uzysku i wyświetlanie ich w postaci graficznej

## 6.2 Odczyt danych dziennika

Istnieje kilka sposobów odczytu i trwałego zapisania danych dziennika:

- Sposób 1: Pobranie i wyświetlanie danych dziennika za pomocą aplikacji KOSTAL PIKO CI
- Sposób 2: Przesłanie danych dziennika do portalu solarnego i wyświetlenie

## Sposób 1: Pobranie i wyświetlenie danych dziennika na komputerze

Z falownika można eksportować różne dane.

- Komunikaty o zdarzeniach
- Dane dotyczące produkcji
- Dane konfiguracji falownika
- W aplikacji KOSTAL PIKO CI otworzyć punkt menu Ustawienia > Ustawienia podstawowe > Eksportuj komunikaty o zdarzeniach. Rozdz. 5.5
- 2. Potwierdzić pobranie.
- Dane dziennika można zapisać na komputerze oraz otworzyć i przetwarzać w każdym popularnym arkuszu kalkulacyjnym (np. Excel).

## Sposób 2: Przesyłanie i wyświetlanie danych dziennika w KOSTAL Solar Portal

Za pomocą portalu solarnego instalację fotowoltaiczną i dane mocy można monitorować przez Internet.

*KOSTAL Solar Portal* ma następujące funkcje, które mogą się różnić w zależności od konkretnego portalu:

- Wyświetlanie danych mocy w postaci graficznej
- Dostęp do portalu przez internet z dowolnego miejsca na ziemi
- Powiadamianie o awariach poprzez e-mail
- Eksport danych (np. plik Excel)
- Długoterminowe przechowywanie danych dziennika

#### Przesłanie danych do KOSTAL Solar Portal:

- ✓ Falownik ma połączenie z Internetem
- ✓ Falownik jest rejestrowany w KOSTAL Solar Portal
- Przesyłanie danych jest domyślnie aktywowane w falowniku

#### INFORMACJA

Warunkiem przesyłania danych jest poprawna konfiguracja połączenia sieciowego/połączenia internetowego

Po aktywacji może potrwać do 20 minut, aż eksport danych będzie widoczny w *KOSTAL Solar Portal*.

KOSTAL Solar Portaljest dostępny pod następującym adresem: www.kostal-solar-portal.com
## 6.3 KOSTAL Solar Portal

Solar Portal firmy KOSTAL Solar Electric GmbH to darmowa platforma internetowa do monitorowania instalacji fotowoltaicznej.

Dane uzysku i komunikaty o zdarzeniach instalacji fotowoltaicznej są przesyłane z falownika przez Internet do *KOSTAL Solar Portal*.

Dane są zapisywane w *KOSTAL Solar Portal*. Informacje te można przeglądać i sprawdzać przez Internet.

#### Warunki użytkowania

- Falownik musi być podłączony do Internetu.
- Falownik nie może być jeszcze zarejestrowany w KOSTAL Solar Portal.
- Falownik nie może być jeszcze przypisany do żadnej instalacji.

Korzystanie z portalu solarnego jest możliwe po wykonaniu trzech kroków:

- Przesyłanie danych do KOSTAL Solar Portal musi być aktywowane w falowniku. W falowniku PIKO CI jest to aktywowane domyślnie.
- Aby móc korzystać z KOSTAL Solar Portal, trzeba dokonać bezpłatnej rejestracji na stronie internetowej firmy KOSTAL Solar Electric GmbH.
- Jeżeli PIKO CI jest połączony z licznikiem KOSTAL Smart Energy Meter, należy dodatkowo skonfigurować KOSTAL Smart Energy Meter w KOSTAL Solar Portal, aby wyświetlać wartości zużycia własnego.

# 7. Konserwacja

| 7.1 | Podczas pracy               | 111 |
|-----|-----------------------------|-----|
| 7.2 | Konserwacja i czyszczenie   | 112 |
| 7.3 | Czyszczenie obudowy         | 113 |
| 7.4 | Wentylatory                 | 114 |
| 7.5 | Wymiana bezpiecznika PV     | 115 |
| 7.6 | Aktualizacja oprogramowania | 116 |
| 7.7 | Kody zdarzeń                | 118 |

# 7.1 Podczas pracy

Po fachowym montażu falownik jest niemalże bezobsługowy.

Do prawidłowej pracy w większym systemie fotowoltaicznym w zupełności wystarczą zwyczajne środki regularnego monitorowania systemu.

W szczególności śledzenie wytworzonej energii za pomocą rejestratora danych, *KOSTAL Solar Portal* lub liczników energii szybko wykaże nieprawidłowości. Zdarzenia podczas pracy są również protokołowane.

Ze względu na bezpieczeństwo instalacji zaleca się wykonywanie prac konserwacyjnych opisanych w kolejnych rozdziałach.

# 7.2 Konserwacja i czyszczenie

Należy wykonywać następujące czynności konserwacyjne falownika:

| Czynność                                                                         | Częstotliwość |
|----------------------------------------------------------------------------------|---------------|
| Sprawdzić stan eksploatacyjny                                                    |               |
| - normalne dźwięki pracy                                                         |               |
| - działanie wszystkich połączeń<br>komunikacyjnych                               | 1× w miesiącu |
| - uszkodzenie lub odkształcenie obudowy                                          |               |
| Połączenia elektryczne                                                           |               |
| - sprawdzić połączenia kablowe i wtyki pod<br>kątem styku i stabilnego osadzenia | tu po półrola |
| - sprawdzić połączenia kablowe pod kątem<br>uszkodzeń lub zużycia                | тх на рогтоки |
| - sprawdzić uziemienie                                                           |               |
| Wyczyścić falownik                                                               |               |
| - usunąć zabrudzenia                                                             |               |
| - sprawdzić kanały wentylacyjne, w razie<br>potrzeby oczyścić                    | 1× w roku     |
| <ul> <li>w razie potrzeby wymontować i wyczyścić<br/>wentylator</li> </ul>       |               |

NIEBEZPIECZEŃSTWO

ZAGROŻENIE ŻYCIA POPRZEZ PORAŻENIE PRĄDEM ELEK-TRYCZNYM I WYŁADOWANIE ELEKTROSTATYCZNE!

W falowniku występują niebezpieczne napięcia. Tylko elektryk może otwierać urządzenie i pracować przy nim.

Przed rozpoczęciem pracy należy odłączyć wszystkie bieguny urządzenia.

Odczekać co najmniej 10 minut po odłączeniu urządzenia, aż wewnętrzne kondensatory rozładują się.

Tab. 2: Lista czynności konserwacyjnych

Prowadzić listy konserwacji, w których zapisywane są wykonane prace.

Niewykonanie czynności konserwacyjnych powoduje utratę gwarancji (patrz punkt dotyczący wykluczenia gwarancji w naszych Warunkach serwisu i gwarancji).

# 7.3 Czyszczenie obudowy

Obudowę czyścić tylko wilgotną ściereczką.

Nie używać ostrych środków czyszczących.

Nie używać urządzeń wytwarzających strumień wody lub aerozol.

Sprawdzać w szczególności stan kanałów wentylacyjnych i działanie wentylatorów.

# 7.4 Wentylatory

Falowniki wytwarzają podczas pracy ciepło, które jest odprowadzane przez wbudowane radiatory i wentylatory. Dlatego kanały wentylacyjne i wentylatory muszą być wolne od zanieczyszczeń.

W przypadku wystąpienia problemów należy sprawdzić, czy temperatura otoczenia falownika nie przekracza górnej wartości granicznej. Jeśli tak, należy poprawić wentylację, aby obniżyć temperaturę. Jeśli wentylator emituje niestandardowy hałas, należy w porę wymienić odpowiednie wentylatory. W tym celu należy skontaktować się z serwisem.

# Czyszczenie kanałów wentylacyjnych odkurzaczem

Aby zapewnić wiele lat bezawaryjnej pracy, należy regularnie czyścić kanały wentylacyjne odkurzaczem.

- Usuwać liście, kurz, owady itp. szczególnie w obszarze kanałów wentylacyjnych.
- Można użyć np. odkurzacza przemysłowego i odkurzyć kanały wentylacyjne oraz najbliższe otoczenie.

#### MOŻLIWE USZKODZENIE

Niebezpieczeństwo uszkodzenia podczas przedmuchiwania sprężonym powietrzem.

Podczas przedmuchiwania kanałów wentylacyjnych sprężonym powietrzem drobne cząsteczki kurzu mogą dostać się do łożysk zainstalowanych wentylatorów, powodując ich uszkodzenie.

Nie używać sprężonego powietrza, lecz czyścić kanały wentylacyjne falownika odkurzaczem.

# 7.5 Wymiana bezpiecznika PV

W falowniku PIKO CI 50/60 można wymienić bezpiecznik PV. W przypadku wyświetlenia odpowiedniego zdarzenia, należy odłączyć falownik od sieci po stronie DC i AC.

- Falownik odłączony od źródła napięcia po stronie DC i AC Rozdz. 4.3.
- 2. Odczekać co najmniej 10 minut po wyłączeniu falownika.
- 3. Otworzyć dolną część falownika.

NIEBEZPIECZEŃSTWO

ZAGROŻENIE ŻYCIA POPRZEZ PORAŻENIE PRĄDEM ELEK-TRYCZNYM I WYŁADOWANIE ELEKTROSTATYCZNE!

W falowniku występują niebezpieczne napięcia. Tylko elektryk może otwierać urządzenie i pracować przy nim.

Przed rozpoczęciem pracy należy odłączyć wszystkie bieguny urządzenia (po stronie AC i DC). Odczekać co najmniej 10 minut po odłączeniu urządzenia, aż wewnętrzne kondensatory rozładują się.

Ilustr. 33: Falownik PIKO CI 50/60 (bezpieczniki PV)

- Bezpieczniki PV
- 4. Do identyfikacji i wymiany uszkodzonego bezpiecznika użyć multimetru.
- 5. Zamontować i przykręcić pokrywę (1,5 Nm).
- 6. Włączyć ponownie falownik.
- ✓ Bezpieczniki PV zostały wymienione.

# 7.6 Aktualizacja oprogramowania

Jeśli producent udostępnia zaktualizowane oprogramowanie dla falownika, można je załadować do falownika. W trakcie tego procesu oprogramowanie jest aktualizowane. Jeśli będzie dostępna aktualizacja, można ją pobrać ze strony internetowej producenta z sekcji pobierania lub uruchomić ją bezpośrednio z aplikacji *KOSTAL PIKO CI*.

#### Przebieg

Użyć smartfona lub tabletu z zainstalowaną aplikacją *KOSTAL PIKO CI*. Należy postępować w następujący sposób:

- Uruchomić aplikację KOSTAL PIKO CI na smartfonie/tablecie używanym do uruchomienia.
- 2. Pobrać pliki aktualizacyjne z serwera za pomocą przycisku *DOWNLOAD UPDATE FILES*.
- Połączyć się z siecią WLAN falownika. Zapisać typ i numer seryjny falownika, na którym ma zostać zainstalowana aktualizacja. Dane te znajdują się na tabliczce znamionowej. Aktywować funkcję WiFi/WLAN na smartfonie/ tablecie poprzez otwarcie ustawień WiFi/WLAN. Wyszukać i wybrać sieć WLAN falownika. SSID falownika składa się z typu i numeru seryjnego falownika.

Przykład: PIKO\_CI\_50\_12345678 Wpisać hasło falownika i potwierdzić. Pojawi się pytanie o stałe połączenie z siecią, na które należy odpowiedzieć twierdząco.

Przełączyć się z powrotem do aplikacji
 KOSTAL PIKO CI i nawiązać połączenie pomiędzy smartfonem/tabletem a falownikiem, naciskając
 START i wybierając falownik.

#### INFORMACJA

Domyślnym hasłem jest: 12345678. Należy je zmienić po pierwszym uruchomieniu.

#### **INFORMACJA**

To pytanie nie pojawia się zawsze. Zależy to od systemu operacyjnego smartfona/tabletu.

- Aby zainstalować aktualizację, trzeba zmienić użytkownika. Wybrać punkt menu Ustawienia > Zarządzanie użytkownikami > Przełącz użytkownika.
- 6. Wpisać hasło *superadmin* i wybrać *Zalogowanie się jako administrator*.
- Wybrać punkt menu Ustawienia > Ustawienia podstawowe > Aktualizuj oprogramowanie sprzętowe CSB.
- Falownik automatycznie odnajdzie plik aktualizacji (G711-xxxxxx.bin) i rozpocznie instalację.
- 8. Po zakończeniu instalacji odczekać ok. 2 minuty do momentu zainstalowania aktualizacji płyty sterującej.
- Wybrać punkt menu Ustawienia > Ustawienia podstawowe > Aktualizuj oprogramowanie sprzętowe CB.
- → Falownik automatycznie odnajdzie plik aktualizacyjny (m\_G9511-xxxxxx.bin) i rozpocznie instalację.
- Sprawdzić wersję oprogramowania w aplikacji w punkcie Ustawienia > Ustawienia podstawowe.
   Wersja oprogramowania sprzętowego: Wersja oprogramowania sprzętowego bezpieczeństwa, np. 3001 dla PIKO CI 30 lub 600101 dla PIKO CI 50/60.

#### Kod wewnętrzny:

Wersja oprogramowania sprzętowego płyty sterownika (CB) np. 010808 = V1.8.8

#### Wersja płyty komunikacyjnej:

Wersja oprogramowania sprzętowego karty komunikacyjnej (CSB) np. 010806 = V1.8.6

Aktualizacja została zainstalowana.

#### INFORMACJA

Domyślnym hasłem dla administratora jest *admin*. Za pomocą tego hasła można dokonać różnych ustawień.

Hasło to powinno zostać zmienione po pierwszym uruchomieniu.

Aby wprowadzić ustawienia sieci i inne ważne ustawienia (np. ograniczenie mocy lub wytyczne dot. sieci), należy wprowadzić hasło *superadmin* podczas logowania jako administrator. Tego hasła nie można zmienić.

# 7.7 Kody zdarzeń

Jeśli zdarzenie występuje rzadko lub tylko przez chwilę i urządzenie powraca do normalnej pracy, nie jest wymagane żadne działanie. Jeśli zdarzenie nie ustąpi lub powtarza się często, należy znaleźć i usunąć przyczynę.

W przypadku zdarzenia trwałego falownik przerywa oddawanie energii i wyłącza się automatycznie.

- Sprawdzić, czy ew. nie wyłączono wyłącznika DC lub zewnętrznego rozłącznika DC.
- Sprawdzić, czy zdarzenie jest spowodowane przerwą w dostawie energii z sieci lub czy nie doszło do uszkodzenia bezpiecznika między licznikiem energii oddawanej i falownikiem.

W przypadku awarii bezpiecznika należy powiadomić instalatora. W przypadku przerwy w dostawie energii poczekać do usunięcia awarii przez zakład energetyczny.

Jeśli zdarzenie występuje tylko przejściowo (awaria sieci, za wysoka temperatura, przeciążenie itp.), falownik powróci automatycznie do pracy zaraz po usunięciu zdarzenia.

Jeśli zdarzenie nie ustąpi, należy skontaktować się z instalatorem lub serwisem producenta.

Należy podać następujące dane:

- Typ urządzenia i numer seryjny. Dane te można znaleźć na tabliczce znamionowej na zewnątrz obudowy.
- Opis błędu (wskaźnik LED i komunikat w aplikacji KOSTAL PIKO CI).

Stany operacyjne i przyczyny błędów są sygnalizowane za pomocą wskaźnika LED i kodu zdarzenia. Kod zdarzenia jest wyświetlany w aplikacji *KOSTAL PIKO CI* lub w *KOSTAL Solar Portal*. Określić rodzaj zdarzenia, korzystając z poniższej tabeli.

#### NIEBEZPIECZEŃSTWO

ZAGROŻENIE ŻYCIA POPRZEZ PORAŻENIE PRĄDEM ELEK-TRYCZNYM I WYŁADOWANIE ELEKTROSTATYCZNE!

W falowniku występują niebezpieczne napięcia. Tylko elektryk może otwierać urządzenie i pracować przy nim.

#### **INFORMACJA**

Dane kontaktowe znajdują się w rozdziale "Gwarancja i serwis": **Rozdz. 10.2**  W przypadku kilkukrotnego lub ciągłego wystąpienia zdarzenia lub zdarzeń, które nie zostały wymienione w tabeli, należy skontaktować się z serwisem.

#### Legenda LED / wyświetlacz

| Dioda LED świeci się | Status paneli PV             |
|----------------------|------------------------------|
| Dioda LED miga       | Status sieci                 |
| Status pierwotny     | Status komunikacji           |
| Dioda LED wyłączona  | Komunikat ostrzegawczy/alarm |

### Komunikaty o zdarzeniach

| Kod                 | Kod                     |                                 | Dioda |   |  |  |  |
|---------------------|-------------------------|---------------------------------|-------|---|--|--|--|
| zdarzenia<br>portal | zdarzenia<br>urządzenie | Znaczenie                       |       |   |  |  |  |
| -                   | -                       | Status normalny                 |       | / |  |  |  |
| -                   | -                       | Uruchomienie/rozruch            |       |   |  |  |  |
| -                   | -                       | Komunikacja WLAN / WiFi / RS485 |       |   |  |  |  |
| -                   | -                       | PV normalnie                    |       |   |  |  |  |
| 30001               | AO                      | Za wysokie napięcie sieci       |       |   |  |  |  |
| 30002               | A1                      | Za niskie napięcie sieci        |       |   |  |  |  |
| 30003               | A2                      | Brak sieci                      |       |   |  |  |  |
| 30004               | A3                      | Za wysoka częstotliwość sieci   |       |   |  |  |  |
| 30005               | A4                      | Za niska częstotliwość sieci    |       |   |  |  |  |
| 30006               | BO                      | Za wysokie napięcie PV          |       |   |  |  |  |
| 30007               | B1                      | Błąd izolacji PV                |       |   |  |  |  |
| 30008               | B2                      | Błąd prądu upływu               |       |   |  |  |  |
| 30010               | CO                      | Niska rezerwa operacyjna mocy   |       |   |  |  |  |
| 30011               | B3                      | Błąd stringu PV                 |       |   |  |  |  |

| Kod                 | Kod                     | Znaczenie                                   | Dioda |  |  |  |
|---------------------|-------------------------|---------------------------------------------|-------|--|--|--|
| zdarzenia<br>portal | zdarzenia<br>urządzenie |                                             |       |  |  |  |
| 30012               | B4                      | Za niskie napięcie PV                       |       |  |  |  |
| 30013               | B5                      | Słabe nasłonecznienie PV                    |       |  |  |  |
| 30014               | A6                      | Błąd sieci                                  |       |  |  |  |
| 30017               | C2                      | Za wysoki udział prądu DC sieci             |       |  |  |  |
| 30018               | C3                      | Błąd przekaźnika falownika                  |       |  |  |  |
| 30020               | C5                      | Za wysoka temperatura falownika             |       |  |  |  |
| 30021               | C6                      | Błąd kontroli prądu różnicowego             |       |  |  |  |
| 30022               | B7                      | Odwrotna polaryzacja stringów               |       |  |  |  |
| 30023               | C7                      | Błąd systemu                                |       |  |  |  |
| 30024               | C8                      | Wentylator zablokowany                      |       |  |  |  |
| 30025               | C9                      | Asymetria obwodu pośredniego                |       |  |  |  |
| 30026               | CA                      | Za wysokie napięcie w obwodzie<br>pośrednim |       |  |  |  |
| 30027               | CB                      | Wewnętrzny błąd komunikacji                 |       |  |  |  |
| 30028               | CC                      | Oprogramowanie niekompatybilne              |       |  |  |  |
| 30029               | CD                      | Błąd EEPROM                                 |       |  |  |  |
| 30030               | CE                      | Ostrzeżenie ciągłe                          |       |  |  |  |
| 30031               | CF                      | Błąd falownika                              |       |  |  |  |
| 30032               | CG                      | Błąd wzmacniacza DC                         |       |  |  |  |
| 30038               | CH                      | Utrata połączenia z masterem                |       |  |  |  |
| 30039               | CJ                      | Utrata połączenia z licznikiem              |       |  |  |  |

Tab. 3: Kody zdarzeń

Jeśli z powodu przedstawionego powyżej zdarzenia falownik przełączy się na tryb wyłączenia, zaświeci się dioda LED ostrzeżenia/alarmu. W tabeli usuwania błędów są opisane działania, które należy podjąć w przypadku najczęstszych zdarzeń.

#### Usuwanie błędów

| Kod zdarzenia                 | Przyczyny                                                                                                                        | Zalecane środki                                                                                                                                                                           |  |  |
|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Za wysokie napięcie sieci     | Napięcie sieci przekracza dopusz-<br>czalow zakres lub sięć nie jest                                                             | Jeśli alarm występuje sporadycznie, przyczyną<br>może być błąd w sieci elektrycznej. Nie są wyma-<br>gane żadne dodatkowe środki.                                                         |  |  |
| Za niskie napięcie sieci      | dostępna.                                                                                                                        |                                                                                                                                                                                           |  |  |
| Brak sieci                    |                                                                                                                                  | Jeśli alarm występuje częściej, należy skontakto-<br>wać się z lokalnym zakładom oporactycznym jeżeli                                                                                     |  |  |
| Za wysoka częstotliwość sieci |                                                                                                                                  | błąd nie jest spowodowany przez sieć, sprawdzić                                                                                                                                           |  |  |
| Za niska częstotliwość sieci  |                                                                                                                                  | ustawienia sieciowe falownika za pomocą aplikacji <b>KOSTAL PIKO CI</b> .                                                                                                                 |  |  |
| Błąd sieci                    |                                                                                                                                  | Jeśli alarm utrzymuje się przez dłuższy czas,<br>należy sprawdzić, czy wyłącznik AC/zaciski AC są<br>odłączone, czy też nastąpiła przerwa w dostawie<br>energii z sięci.                  |  |  |
| Za wysokie napięcie PV        | Napięcie wejściowe paneli PV<br>przekracza dopuszczalny zakres<br>falownika.                                                     | Sprawdzić liczbę paneli PV i w razie potrzeby dostosować ją odpowiednio.                                                                                                                  |  |  |
| Za niskie napięcie PV         | Napięcie wejściowe paneli PV jest<br>niższe od ustawionej wartości<br>ochronnej falownika.                                       | Gdy natężenie światła słonecznego jest niskie,<br>napięcie paneli PV spada. Nie są wymagane żadne<br>działania.                                                                           |  |  |
|                               |                                                                                                                                  | Jeśli natężenie światła słonecznego jest wysokie,<br>należy sprawdzić, czy w stringach PV nie ma<br>zwarć, otwartych obwodów itp.                                                         |  |  |
| Błąd izolacji PV              | Pomiędzy stringami PV a uzie-<br>mieniem ochronnym występuje<br>zwarcie. Stringi PV są instalo-<br>wane w długotrwałym wilgotnym | W razie przypadkowego wystąpienia alarmu,<br>obwody zewnętrzne (stringi PV) dostarczają<br>nietypowe wartości. Po usunięciu usterki falownik<br>automatycznie powraca do normalnej pracy. |  |  |
|                               | środowisku.                                                                                                                      | Jeżeli alarm pojawia się wielokrotnie lub utrzymuje<br>się przez dłuższy czas, należy sprawdzić, czy<br>rezystancja izolacji stringów PV do uziemienia nie<br>jest zbyt niska.            |  |  |
| Błąd prądu upływu             | Rezystancja izolacji do uziemienia<br>po stronie weiściowej zmniejsza                                                            | Sprawdzić rezystancję izolacji do uziemienia dla stringów PV, Jeśli wystapiło zwarcje, usunać bład.                                                                                       |  |  |
|                               | się podczas pracy falownika,                                                                                                     | Jeżeli rezystancja izolacji do uziemienia w środowi-                                                                                                                                      |  |  |
|                               | resztkowy.                                                                                                                       | sku deszczowym jest niższa od wartości domyśl-<br>nej, należy ustawić rezystancję izolacji w aplikacji                                                                                    |  |  |
|                               |                                                                                                                                  | KOSTAL PIKO CI.                                                                                                                                                                           |  |  |

| Kod zdarzenia                                                | Przyczyny                                                    | Zalecane środki                                                                                                                                                                                 |  |  |
|--------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Słabe nasłonecznienie PV                                     | Stringi PV są od dłuższego czasu                             | Sprawdzić, czy string PV jest zasłonięty.                                                                                                                                                       |  |  |
|                                                              | zasłonięte.                                                  | Jeśli string PV jest czysty i nie jest zasłonięty,                                                                                                                                              |  |  |
|                                                              | Stringi PV pogarszają się.                                   | czy ich wydajność nie uległa pogorszeniu.                                                                                                                                                       |  |  |
| Błąd stringu PV                                              | Kable stringów PV zostały                                    | Sprawdzić, czy kable stringów PV są prawidłowo                                                                                                                                                  |  |  |
|                                                              | podłączone odwrotnie podczas<br>instalacji falownika.        | podłączone. Jeśli są one podłączone odwrotnie,<br>należy prawidłowo podłączyć kable.                                                                                                            |  |  |
| Za niskie napięcie BUS                                       | Nietypowa nierównowaga                                       | Jeśli alarm występuje sporadycznie, po usunięciu                                                                                                                                                |  |  |
| Za wysokie napięcie BUS                                      | gii została spowodowana przez                                | błędu falownik może automatycznie powrócić do<br>normalnej pracy.<br>Jeśli alarm pojawia się wielokrotnie, należy skon-<br>taktować się z serwisem w celu uzyskania wspar-<br>cia technicznego. |  |  |
| Odwrotna polaryzacja stringów                                | stringi PV, co poskutkowało<br>znaczna zmiana warunków pracy |                                                                                                                                                                                                 |  |  |
| Błąd wzmacniacza DC                                          | w sieci.                                                     |                                                                                                                                                                                                 |  |  |
| Błąd EEPROM                                                  | Uszkodzony komponent EEPROM                                  | Skontaktować się z serwisem. Wymienić kartę monitorowania.                                                                                                                                      |  |  |
| Zerowe wytwarzanie energii<br>i żółta lampka alarmowa, która | Awaria komunikacji                                           | Jeśli używany jest nowoczesny lub inny rejestrator<br>danych, należy zrestartować rejestrator danych.<br>Jeśli błąd nie ustąpi, należy skontaktować się                                         |  |  |
| świeci w systemie zdalnego                                   |                                                              |                                                                                                                                                                                                 |  |  |
| monitorowania                                                |                                                              | z serwisem.                                                                                                                                                                                     |  |  |
| System zdalnego monitorowania wskazuje zerowe wytwarzanie    | Awaria komunikacji                                           | Jeśli używany jest nowoczesny lub inny rejestrato<br>danych, należy zrestartować rejestrator danych.                                                                                            |  |  |
| energii                                                      |                                                              | Jeśli błąd nie ustąpi, należy skontaktować się<br>z serwisem.                                                                                                                                   |  |  |
| System zdalnego monitoro-                                    | Wyłącznik DC na OFF                                          | Sprawdź, czy wyłącznik DC nie jest uszkodzony,                                                                                                                                                  |  |  |
| wania nie wskazuje napięcia<br>wviściowego                   |                                                              | a jeśli nie, przełączyć go do pozycji ON.<br>Jeśli bład nie ustapi, należy skontaktować sie                                                                                                     |  |  |
| <u> </u>                                                     |                                                              | z serwisem.                                                                                                                                                                                     |  |  |
| Błąd sieci                                                   | Usterka w sieci elektrycznej                                 | Poczekać, aż zasilanie zostanie przywrócone.                                                                                                                                                    |  |  |
|                                                              | Wyłącznik DC na OFF                                          | Ustawić wyłącznik DC w pozycji ON. Jeśli wyłącz-                                                                                                                                                |  |  |
|                                                              |                                                              | nik DC wyłącza się często, należy skontaktować się z serwisem.                                                                                                                                  |  |  |
| Utrata połączenia z masterem                                 | Połączenie pomiędzy falownikiem                              | Sprawdzić, czy linia komunikacyjna do falownika                                                                                                                                                 |  |  |
|                                                              | slave i master zostało przerwane.                            | Jeśli błąd nie ustąpi, należy skontaktować się                                                                                                                                                  |  |  |
|                                                              |                                                              | z serwisem.                                                                                                                                                                                     |  |  |
|                                                              |                                                              | Sprawdzić ustawienia komunikacji w aplikacji<br>KOSTAL PIKO CI.                                                                                                                                 |  |  |

| Kod zdarzenia                  | Przyczyny                                                           | Zalecane środki                                                                                                                                                                                                                          |
|--------------------------------|---------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Utrata połączenia z licznikiem | Przerwane połączenie komunika-<br>cyjne z licznikiem energii (KSEM) | Sprawdzić, czy linia komunikacyjna pomiędzy<br>falownikiem master a licznikiem energii (KSEM) nie<br>została przerwana.<br>Jeśli błąd nie ustąpi, należy skontaktować się<br>z serwisem.<br>Sprawdzić ustawienia komunikacji w aplikacji |
|                                |                                                                     | KOSTAL PIKO CI.                                                                                                                                                                                                                          |

Tab. 4: Usuwanie błędów

# 8. Dane techniczne

| 8.1 | Dane techniczne  | <br>128 | 5 |
|-----|------------------|---------|---|
|     |                  |         |   |
| 8.2 | Schematy blokowe | <br>129 | 9 |

# 8.1 Dane techniczne

Zastrzegamy możliwość zmian technicznych i pomyłek.

Aktualne informacje znajdują się na stronie www.kostal-solar-electric.com.

| Klasa mocy                                                                                                                                        |     | 30                         | 50                                                   | 60                                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------|-----|----------------------------|------------------------------------------------------|-----------------------------------------------------|
| Strona wejściowa (DC)                                                                                                                             |     |                            |                                                      |                                                     |
| Maks. moc PV(cos $\phi$ = 1)                                                                                                                      | kWp | 45                         | 75                                                   | 90                                                  |
| Nominalna moc DC                                                                                                                                  | kW  | 30                         | 50                                                   | 60                                                  |
| Znamionowe napięcie wejściowe                                                                                                                     | V   | 620                        | 620                                                  | 620                                                 |
| Napięcie wejściowe początkowe                                                                                                                     | V   | 250                        | 250                                                  | 250                                                 |
| Napięcie wejściowe (U <sub>DCmin</sub> U <sub>DCmax</sub> )                                                                                       | V   | 180 1000                   | 200 1100                                             | 200 1100                                            |
| Zakres MPP przy mocy znamionowej (U_{\text{MPPmin}} \dots U_{\text{MPPmax}})                                                                      | V   | 480 800                    | 540 800                                              | 540 800                                             |
| Zakres MPP przy mocy znamionowej<br>(U <sub>MPPworkmin</sub> U <sub>MPPworkmax</sub> )                                                            | V   | 180 960                    | 200 960                                              | 200 960                                             |
| Maks. napięcie robocze (U <sub>DCworkmax</sub> )                                                                                                  | V   | 960                        | 960                                                  | 960                                                 |
| Maks. prąd wejściowy (I <sub>DCmax</sub> ) na MPPT<br>od numeru katalogowego: PIKO CI 30: 10534223,<br>PIKO CI 50: 10534084, PIKO CI 60: 10534085 | A   | DC1-3: 40,5<br>DC4-6: 40,5 | DC1-3: 39<br>DC4-6: 39<br>DC7-8: 26<br>DC9-10: 26    | DC1-3: 39<br>DC4-6: 39<br>DC7-9: 39<br>DC9-12: 39   |
| Maks. prąd DC na wtyk DC (I <sub>Stringmax</sub> )<br>od numeru katalogowego: PIKO CI 30: 10534223,<br>PIKO CI 50: 10534084, PIKO CI 60: 10534085 | A   | 14                         | 18                                                   |                                                     |
| Maks. prąd wejściowy (I <sub>DCmax</sub> ) na MPPT<br>do numeru katalogowego: PIKO CI 30: 10523267,<br>PIKO CI 50: 10523268, PIKO CI 60: 10523269 | A   | DC1-3: 37,5<br>DC4-6: 37,5 | DC2-4: 33<br>DC6-8: 33<br>DC10-11: 22<br>DC13-14: 22 | DC2-4: 33<br>DC6-8: 33<br>DC9-11: 33<br>DC12-14: 33 |
| Maks. prąd DC na wtyk DC (I <sub>Stringmax</sub> )<br>do numeru katalogowego: PIKO Cl 30: 10523267,<br>PIKO Cl 50: 10523268, PIKO Cl 60: 10523269 | A   | 14                         |                                                      |                                                     |
| Maks. fotowoltaiczny prąd zwarciowy ( $I_{SC_PV}$ )                                                                                               | А   | 90<br>(45/45)              | 150<br>(45/45/30/30)                                 | 180<br>(45/45/45/45)                                |
| Liczba wejść DC                                                                                                                                   |     | 6                          | 10                                                   | 12                                                  |
| Liczba niezależnych trackerów MPP                                                                                                                 |     | 2                          | 4                                                    | 4                                                   |

| Klasa mocy                                                          |     | 30                | 50      | 60   |  |  |
|---------------------------------------------------------------------|-----|-------------------|---------|------|--|--|
| Strona wyjściowa (AC)                                               |     |                   |         |      |  |  |
| Moc znamionowa, cos $\phi = 1 \ (P_{AC,r})$                         | kVA | 30                | 50      | 60   |  |  |
| Nominalna moc pozorna (S <sub>ACnom</sub> )                         | kVA | 33                | 55      | 66   |  |  |
| Maks. moc wyjściowa (S <sub>ACmin</sub> )                           | kVA | 30                | 50      | 60   |  |  |
| Min. napięcie wyjściowe (U <sub>ACmin</sub> )                       | V   | 277               | 277     | 277  |  |  |
| Maks. napięcie wyjściowe (U <sub>ACmax</sub> )                      | V   | 520               | 520     | 520  |  |  |
| Prąd znamionowy (I <sub>Nom</sub> )                                 | А   | 43,3              | 72,2    | 86,8 |  |  |
| Maks. natężenie wyjściowe (I <sub>ACmaks</sub> )                    | А   | 48                | 83      | 92   |  |  |
| Prąd zwarciowy (RMS)                                                | А   | 48                | 83      | 92   |  |  |
| Przyłącze do sieci                                                  |     | 3N~, 400 V, 50 Hz |         |      |  |  |
| Częstotliwość znamionowa (fr)                                       | Hz  | 50                |         |      |  |  |
| Częstotliwość sieci (f <sub>min</sub> - f <sub>max</sub> )          | Hz  |                   | 47/53   |      |  |  |
| Zakres nastawy współczynnika mocy cos $\phi_{AC,r}$                 |     |                   | 0,810,8 |      |  |  |
| Współczynnik mocy przy mocy znamionowej (cos $\phi_{\text{AC},r}$ ) |     |                   | 1       |      |  |  |
| Maks. współczynnik zawartości harmonicznych                         | %   |                   | 3       |      |  |  |
| Cechy urządzenia                                                    |     |                   |         |      |  |  |
| Tryb czuwania (zużycie nocne)                                       | W   | < 1               |         |      |  |  |
| Sprawność                                                           |     |                   |         |      |  |  |
| Maks. sprawność                                                     | %   | 98,2              | 98,3    | 98,3 |  |  |
| Sprawność Euro-Eta                                                  | %   | 97,9              | 98,1    | 98,1 |  |  |
| Sprawność dopasowania MPP                                           | %   | 99,9              | 99,9    | 99,9 |  |  |

| Klasa mocy                                                                                  |       | 30           | 50            | 60        |
|---------------------------------------------------------------------------------------------|-------|--------------|---------------|-----------|
| Dane systemu                                                                                |       |              |               |           |
| Topologia: Bez separacji galwanicznej – system<br>beztransformatorowy                       |       |              | ~             |           |
| Stopień ochrony wg IEC 60529                                                                |       |              | IP 65         |           |
| Klasa ochronności wg normy IEC 62103                                                        |       |              | Ι             |           |
| Kategoria przepięciowa wg IEC 60664-1<br>strona wejściowa (generator PV) <sup>1</sup>       |       |              | II            |           |
| Kategoria przepięciowa wg IEC 60664-1<br>strona wyjściowa (przyłącze do sieci) <sup>2</sup> |       |              | Ш             |           |
| Ograniczniki przepięć AC/DC                                                                 |       |              | Тур 2         |           |
| Stopień zanieczyszczenia <sup>3</sup>                                                       |       |              | 4             |           |
| Kategoria środowiskowa (montaż na zewnątrz)                                                 |       | $\checkmark$ |               |           |
| Kategoria środowiskowa (montaż wewnątrz budynku)                                            |       | ✓            |               |           |
| Odporność na promieniowanie UV                                                              |       | ✓            |               |           |
| Średnica przewodu AC (min-max)                                                              | mm    | 22 32        | 35 .          | 50        |
| Przekrój przewodu AC (min-max)                                                              | mm²   | 10 25        | 35 .          | 50        |
| Przekrój przewodu DC (min-max)                                                              | mm²   |              | 4 6           |           |
| Maks. zabezpieczenie strony wyjściowej zgodnie z IEC 60898-1                                |       | B63/C63      | B125/C125     | B125/C125 |
| Ochrona osób wewn. wg normy PN-EN 62109-2                                                   |       | F            | CMU/RCCB typu | В         |
| Rozłącznik samoczynny wg VDE V 0126-1-1                                                     |       |              | ~             |           |
| Wysokość/szerokość/głębokość                                                                | mm    | 470/555/270  | 710/8         | 55/285    |
| Masa                                                                                        | kg    | 41 83        |               | 3         |
| Chłodzenie z regulacją wentylatorów                                                         |       | ~            |               |           |
| Maks. przepływ powietrza                                                                    | m³/h  | 185          | 4             | 11        |
| Emisja hałasu (typowa)4                                                                     | dB(A) | 50           | <             | 63        |
| Temperatura otoczenia                                                                       | °C    | -25 +60      |               |           |

| Klasa mocy                                                                                                                                                                       |   | 30                  | 50   | 60 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---------------------|------|----|
| Maks. wysokość n.p.m.                                                                                                                                                            | m |                     | 4000 |    |
| Względna wilgotność powietrza                                                                                                                                                    | % | 0100                |      |    |
| Złącza po stronie DC                                                                                                                                                             |   | Wtyczka Amphenol H4 |      | H4 |
| Złącza po stronie AC (śruby)                                                                                                                                                     |   | M6                  | Ν    | 18 |
| Złącza                                                                                                                                                                           |   |                     |      |    |
| Ethernet LAN TCP/IP (RJ45)                                                                                                                                                       |   |                     | 2    |    |
| WLAN                                                                                                                                                                             |   |                     | ~    |    |
| RS485                                                                                                                                                                            |   |                     | 1    |    |
| Wejścia cyfrowe                                                                                                                                                                  |   |                     | 4    |    |
| Dyrektywy/certyfikaty                                                                                                                                                            |   |                     |      |    |
| EN 62109-1, EN 62109-2, VDE AR-N 4105:2018, PO 12.2, RD 244:2019, UNE 217001, EN 50549-1-2, CEI0-16 2019, CEI0-21 2019 > 11.08 kW UK G99/1-4 LV JBB-DCC MV 2015, JEC 61727/62116 |   |                     |      |    |

<sup>1</sup> Kategoria przepięciowa II (wejście DC): Urządzenie nadaje się do podłączenia do stringów fotowoltaicznych. W przypadku długich przewodów doprowadzających na zewnątrz lub instalacji odgromowej w obrębie instalacji fotowoltaicznej może być konieczne zainstalowanie ograniczników przepięć.

<sup>2</sup> Kategoria przepięciowa III (wyjście AC): Urządzenie nadaje się do podłączenia na stałe w rozdzielni sieci za licznikiem i wyłącznikiem nadmiarowo-prądowym. Jeśli przewód przyłączeniowy jest ułożony na długim odcinku na zewnątrz, może być konieczne zainstalowanie ograniczników przepięć.

<sup>3</sup> Stopień zanieczyszczenia 4: Zabrudzenie prowadzi do trwałej przewodności, np. poprzez przewodzące pyły, deszcz lub śnieg, w pomieszczeniach otwartych lub na zewnątrz.

<sup>4</sup> Pomiar przy mocy znamionowej w temperaturze otoczenia 23 °C. W przypadku niekorzystnego połączenia stringów lub wyższej temperatury otoczenia emisja hałasu może być większa.

# 8.2 Schematy blokowe

Ilustr. 34: Schemat blokowy PIKO CI 30

- Wejścia DC dla paneli PV
- 2 Bezpieczniki DC
- Zintegrowany ogranicznik przepięć (strona DC)
- Rozłącznik elektroniczny DC
- 5 Filtr EMC (strona DC)
- 6 Nastawnik DC
- Obwód pośredniczący
- Obwód mostka falownika
- Monitorowanie i wyłączanie sieci
- 10 Filtr EMC (strona AC)
- 11 Przyłącze AC
- Panele złączy COM1 i COM2 dla interfejsów komunikacyjnych
- 13 Pomiar napięcia i prądu
- 14 Sterowanie systemem i komunikacją
- 15 Dioda statusu
- 16 Wyłącznik DC

llustr. 35: Schemat blokowy PIKO CI 50

- Wejścia DC dla paneli PV
- 2 Bezpieczniki DC
- 3 Zintegrowany ogranicznik przepięć (strona DC)
- 4 Rozłącznik elektroniczny DC
- 5 Filtr EMC (strona DC)
- 6 Nastawnik DC
- Obwód pośredniczący
- Obwód mostka falownika
- Monitorowanie i wyłączanie sieci
- 10 Filtr EMC (strona AC)
- 11 Przyłącze AC
- Panele złączy COM1 i COM2 dla interfejsów komunikacyjnych
- 13 Pomiar napięcia i prądu
- 14 Sterowanie systemem i komunikacją
- 15 Dioda statusu
- 16 Wyłącznik DC

Ilustr. 36: Schemat blokowy PIKO CI 60

- 1 Wejścia DC dla paneli PV
- 2 Bezpieczniki DC
- 3 Zintegrowany ogranicznik przepięć (strona DC)
- Rozłącznik elektroniczny DC
- 5 Filtr EMC (strona DC)
- 6 Nastawnik DC
- Obwód pośredniczący
- Obwód mostka falownika
- Monitorowanie i wyłączanie sieci
- 10 Filtr EMC (strona AC)
- 11 Przyłącze AC
- Panele złączy COM1 i COM2 dla interfejsów komunikacyjnych
- 13 Pomiar napięcia i prądu
- 14 Sterowanie systemem i komunikacją
- 15 Dioda statusu
- 16 Wyłącznik DC

# 9. Akcesoria

| 9.1 | KOSTAL Solar Portal    | <br>133 |
|-----|------------------------|---------|
|     |                        |         |
|     |                        |         |
| 9.2 | Aplikacja KOSTAL Solar | <br>134 |

# 9.1 KOSTAL Solar Portal

*KOSTAL Solar Portal* umożliwia monitorowanie pracy falowników przez Internet. Rejestracja w *KOSTAL Solar Portal* jest bezpłatna i możliwa na naszej stronie internetowej www.kostal-solar-portal.com

Informacje na temat konfiguracji można znaleźć

#### w Rozdz. 6.3.

Dalsze informacje na temat tego produktu można znaleźć na naszej stronie internetowej www.kostal-solar-electric.com w rubryce Produkty > Oprogramowanie monitorujące > KOSTAL Solar Portal.

## 9.2 Aplikacja KOSTAL Solar

Bezpłatna aplikacja KOSTAL Solar służy do profesjonalnego monitorowania systemu fotowoltaicznego. Aplikacja KOSTAL Solar umożliwia wygodny i łatwy dostęp do wszystkich funkcji ze smartfona lub tabletu.

Do skonfigurowania i korzystania z aplikacji jest potrzebny dostęp do *KOSTAL Solar Portal* oraz skonfigurowany tam falownik. Do zalogowania się w aplikacji służą te same dane logowania, co do *KOSTAL Solar Portal*.

Aplikacja KOSTAL Solar pozwala na wygodne monitorowanie systemu fotowoltaicznego z dowolnego miejsca oraz dostęp do różnych parametrów systemu. Umożliwia sprawdzanie danych dotyczących zużycia i wytwarzania energii w różnych okresach, takich jak dzień, tydzień, miesiąc i rok, jak również podgląd archiwalnych danych systemu fotowoltaicznego. Dzięki aplikacji KOSTAL Solar użytkownik ma zatem zawsze aktualne informacje o stanie swojego systemu.

Aplikację KOSTAL Solar można pobrać bezpłatnie i korzystać z nowych i zaawansowanych funkcji.

Dalsze informacje na temat tego produktu można znaleźć na naszej stronie internetowej www.kostal-solar-electric.com w rubryce Produkty > Oprogramowanie monitorujące > Aplikacja KOSTAL Solar.

# 10. Załącznik

| 10.1 | Tabliczka znamionowa 1                    | 36 |
|------|-------------------------------------------|----|
|      |                                           |    |
| 10.2 | Gwarancja i serwis 1                      | 37 |
|      |                                           |    |
| 10.3 | Przekazanie użytkownikowi 1               | 38 |
| 10.4 |                                           |    |
| 10.4 | vvyłączenie z ekspioatacji i utylizacja 1 | 39 |

## 10.1 Tabliczka znamionowa

Na falowniku znajduje się tabliczka znamionowa. Tabliczka znamionowa pozwala na identyfikację typu urządzenia, numeru seryjnego i najważniejszych danych technicznych. Nazwa i adres producenta

- 2 Typ urządzenia
- Numer katalogowy KOSTAL
- 4 Numer servjny
- 5 Informacje na temat wejść DC:
  - Zakres napięcia wejściowego
  - Maks. napięcie wejściowe
  - Maks. prąd wejściowy (panele PV na grupę DC)
  - Maks. prąd zwarciowy (panele PV, na grupę DC)
  - Kategoria przepięciowa
- Dane wyjścia AC:
  - Liczba faz zasilania
  - Napięcie wyjściowe (nominalne)
  - Częstotliwość sieci
  - Maks. prąd wyjściowy
  - Maks. moc wyjściowa
  - Maks. moc pozorna wyjściowa
  - Zakres regulacji współczynnika mocy
  - Kategoria przepięciowa

Klasa ochronności wg IEC 62103, stopień ochrony, zakres temperatury otoczenia, kategoria przepięciowa, wymagania wbudowanego modułu monitorowania sieci

- <sup>8</sup> Symbole ostrzegawcze
- Inak CE

llustr. 37: Tabliczka znamionowa

## 10.2 Gwarancja i serwis

Dalsze informacje na temat warunków serwisu i gwarancji można znaleźć w sekcji materiałów do pobrania do produktu na naszej stronie internetowej **www.kostal-solar-electric.com**.

Do celów serwisowych oraz ewentualnej dostawy części wymagane jest podanie typu urządzenia i numeru seryjnego. Dane te można znaleźć na tabliczce znamionowej na zewnątrz obudowy.

Wolno stosować wyłącznie oryginalne części zamienne.

W przypadku pytań technicznych można kontaktować się z naszą infolinią serwisową:

- Niemcy i inne kraje <sup>1</sup>
   +49 (0)761 477 44 222
- Szwajcaria
   +41 32 5800 225
- Francja, Belgia, Luksemburg
   +33 16138 4117
- Grecja
   +30 2310 477 555
- Włochy
   +39 011 97 82 420
- Hiszpania, Portugalia<sup>2</sup>
   +34 961 824 927
- Polska
   +48 22 153 14 98

<sup>1</sup> język: niemiecki, angielski

<sup>2</sup> język: hiszpański, angielski

## 10.3 Przekazanie użytkownikowi

Po zamontowaniu i uruchomieniu całość dokumentacji należy przekazać użytkownikowi.

Należy poinstruować użytkownika w zakresie obsługi instalacji fotowoltaicznej i falownika. W szczególności należy zwrócić jego uwagę na następujące kwestie:

- Pozycja i funkcja wyłączników DC
- Pozycja i funkcja wyłącznika nadmiarowo-prądowego AC
- Przebieg odłączania urządzenia
- Bezpieczne postępowanie z urządzeniem
- Fachowy przebieg przeglądów i konserwacji urządzenia
- Znaczenie diod LED i informacji w aplikacji
- Osoby do kontaktu w razie awarii

Dla obustronnego zabezpieczenia użytkownikowi najlepiej jest przekazać dokumentację systemu i kontroli zgodnie z normą DIN EN 62446 (VDE 0126-23) (opcja).

Użytkownik powinien potwierdzić podpisem otrzymanie dokumentacji od instalatora lub serwisanta.

Instalator powinien potwierdzić podpisem prawidłowy i bezpieczny montaż falownika i systemu PV.

# 10.4 Wyłączenie z eksploatacji i utylizacja

Aby zdemontować falownik, należy wykonać następujące czynności:

- Odłączyć falownik od źródła napięcia po stronie AC i DC. Rozdz. 4.3
- 2. PIKO CI 50/60: Otworzyć dolną pokrywę falownika.
- 3. Odłączyć złączki i przepusty kablowe.
- Odłączyć wszystkie przewody DC, przewody AC i przewody komunikacyjne.
- 5. PIKO CI 50/60: Zamknąć pokrywę falownika.
- 6. Odkręcić śrubę zabezpieczającą na uchwycie falownika.
- 7. Zdjąć falownik ze ściany.

#### Prawidłowa utylizacja

Urządzeń elektronicznych oznaczonych symbolem przekreślonego pojemnika na śmieci nie wolno wyrzucać do zwykłego pojemnika na śmieci. Urządzenia te można oddawać bezpłatnie w punktach zbiórki.

Należy zasięgnąć informacji na temat lokalnych przepisów dotyczących selektywnej zbiórki sprzętu elektrycznego i elektronicznego.

#### NIEBEZPIECZEŃSTWO

ZAGROŻENIE ŻYCIA POPRZEZ PORAŻENIE PRĄDEM ELEK-TRYCZNYM I WYŁADOWANIE ELEKTROSTATYCZNE!

Odłączyć urządzenie od źródła napięcia i zabezpieczyć przed ponownym włączeniem. Rozdz. 4.3

# Indeks

### Α

| kcesoria                   | 132 |
|----------------------------|-----|
| ktualna instrukcja obsługi | .10 |

#### D

| Dane dziennika          | 106, 107, 108 |
|-------------------------|---------------|
| Dane techniczne         |               |
| Deklaracje zgodności UE | 9             |

### Е

| ksport danych1 | 30 |
|----------------|----|
| thernet        | 47 |

### G

| Generator PV |  |
|--------------|--|
| Gwarancja    |  |
|              |  |
| I            |  |
| Infolinia    |  |

### J

| Język | <br> | <br>2 |
|-------|------|-------|
|       |      |       |

### Κ

| Kabel                    | .128 |
|--------------------------|------|
| Komunikaty o zdarzeniach | .119 |

#### Μ

| onitorowanie sieci |
|--------------------|
|--------------------|

### Ρ

| Pierwsze uruchomienie | 77, 78 |
|-----------------------|--------|
| Portal solarny        | 107    |
| Przewody DC           | 139    |

### S

| chemat blokowy | . 129 |
|----------------|-------|
| kładowanie     | 30    |

### т

| Tabliczka znamionowa118 | 3, 136, 137 |
|-------------------------|-------------|
| Transport               |             |

### U

| Ustawienia           |  |
|----------------------|--|
| Usuwanie błędów      |  |
| Utylizacja           |  |
| Uwagi                |  |
| Uwagi bezpieczeństwa |  |
| Uwagi ostrzegawcze   |  |
|                      |  |

#### W

| Vyłącznik DC                 | .81,82 |
|------------------------------|--------|
| Vyłącznik nadmiarowo-prądowy | 80, 82 |

### Ζ

| Zakres dostawy                        | 31 |
|---------------------------------------|----|
| Zastosowanie zgodnie z przeznaczeniem | 7  |
| Złącza1                               | 28 |

Aktualne informacje znajdują się na stronie www.kostal-solar-electric.com. Producent: KOSTAL Industrie Elektrik GmbH, Hagen, Niemcy

11/2021 - PL - DOC02534925-0001 - Zmiany techniczne i błędy zastrzeżone.